On Digital Differentiators, Hilbert Transformers, and Half-Band Low-Pass Filters

SUHAS C. DUTTA ROY AND BALBIR KUMAR

Abstract—Interrelationships between the digital differentiator (DD), the digital Hilbert transformer (DHT), and the half-band low-pass filter (1/2-LPF) have been brought out. A number of important properties, confirming the close proximity of these filters, are highlighted. Theoretical results have been substantiated by transforming minimax* relative error DD’s to equiripple DHT’s and equiripple 1/2-LPF’s.

I. INTRODUCTION

D

I

G

I

TALE differentiators (DD), digital Hilbert transformers (DHT), and half-band low-pass filters (1/2-LPF) are closely related to each other, but their interrelationships do not appear to have been recorded in the literature in completeness. A few characteristics for FIR-DD’s and FIR-DHT’s were brought out by Rabiner and Schafer [1], [2]. Jackson [3] suggested a procedure, using rotation in the Z plane, for conversion of impulse response of a DHT to that of a 1/2-LPF. Crochiere and Rabiner [4] derived an explicit formula for computation of impulse response for an ideal DHT from that of an ideal 1/2-LPF. The purpose of this paper is to present a complete picture of the interrelationships and to show how the design of one member of the family can be transformed to that of another, with particular emphasis of minimax relative error designs [1]. The notations $h(n)$ and $H{w}$ will be used for impulse response and frequency response, respectively, and the subscripts D, H, and L will be used to indicate DD, DHT, and 1/2-LPF, respectively. Furthermore, a tilde above the symbol h or H will be used to mean the ideal case, while absence of a tilde will mean a realizable approximation.

II. INTERRELATIONSHIPS

A. Relations Connecting the Impulse Responses

For the ideal case,

$$H_D(w) = \begin{cases} 0, & -\pi < w < 0 \\ \pi, & 0 < w < \pi \end{cases}$$

Then

$$h_D(n) = \begin{cases} 1, & -\pi/2 < n < \pi/2 \\ 0, & \text{elsewhere} \end{cases}$$

and

$$H_D(w) = \begin{cases} \{1/\pi\} \sin (nw), & n = 0 \\ \{1/\pi\} \sin (nw), & n \neq 0 \end{cases}$$

$$h_D(n) = \begin{cases} 0, & n = 0 \\ \{1/n\} \cos (nw), & n \neq 0 \end{cases}$$

Fig. 1 shows plots of these responses where the ordinates are appropriately normalized so as to make the interrelationships obvious. A close look at the impulse responses reveals the following main features:

(i) $h_D(n)$ and $h_L(n)$ have odd symmetry whereas $h_H(n)$ has even symmetry about $n = 0$. Consequently, $H_D(0) = H_L(0) = 0$.

(ii) $h_L(n) = h_H(n) = 0$ for even values of $n (n \in Z)$. From these observations, explicit relations connecting the impulse responses are easily derived and are given in Table I. In this, $8(n)$ represents the unit sample and the symbol $S(n)$ has been used, for brevity, to denote $\sin(nw)$. This will be useful when one wishes to transform a practical design of one member of the family to another; the appropriate off-diagonal entry in Table I is then to be used with tilde removed.

B. Relations Between $H_D(w)$ and $H_H(w)$

A little reflection will show that $H_D(w)/j$ or $d(H_D(w)/j)/dw$ can be used interchangeably since both equal to unity. For the ideal cases, we can write

$$H_D(w) = \begin{cases} -H_D(w), & 0 < w \leq \pi \\ +H_D(w), & -\pi < w \leq 0 \end{cases}$$

where prime stands for differentiation with respect to w.

It is obvious that $H_D(w)$ represents an ideal all pass filter. The ideal DD and the ideal DHT, like the ideal LPF are noncausal and, therefore, cannot be realized exactly; to implement these, some approximation is necessary. Assume noncausal, finite impulse response of length N (assumed to be odd) for each of these filters. Note that these impulse responses can be made causal by adding a delay of at least $(N - 1)/2$ samples. Let $H_D(w)$ be a minimax relative error approximation of $H_D(w)$ [1]. Then the relative error $r_D(w)$ is an equiripple error function for
Fig. 1. (a), (b), (c) Frequency response of ideal half-band low-pass filter, digital Hilbert transformer, and digital differentiator, respectively, (d), (e), (f) Impulse response of ideal half-band low-pass filter, digital Hilbert transformer, and digital differentiator, respectively, shown up to $n = \pm 1$.

Table I

<table>
<thead>
<tr>
<th>Conversion</th>
<th>1/2-LPF</th>
<th>DHT</th>
<th>DD</th>
</tr>
</thead>
<tbody>
<tr>
<td>1/2-LPF</td>
<td>$h_L(n) = \left{ \begin{array}{ll} 1, & n = 0 \ \frac{1}{2\pi} S(n), & n \neq 0 \end{array} \right.$</td>
<td>$h_{DHT}(n) = 2S(n)$</td>
<td>$h_{DD}(n) = I_n(n)$</td>
</tr>
<tr>
<td>JJHT</td>
<td>$h_{JJHT}(n) = h_{DHT}(n) - 2S(n)$</td>
<td>$h_{JJHT}(n) = S(n)$</td>
<td>$h_{JJHT}(n) = I_n(n)$</td>
</tr>
<tr>
<td>DD</td>
<td>$h_{DD}(n) = \frac{1}{\pi} \sum_{k=1}^{\infty} \frac{s_k}{k} S(n-k)$</td>
<td>$h_{DD}(n) = S(n)$</td>
<td>$h_{DD}(n) = I_n(n)$</td>
</tr>
</tbody>
</table>

Note: In the above relations, zero delay impulse responses (i.e. non-causal) have been assumed for simplicity. For causal sequences with (N-D/2) samples delay, replace n by $(n - \frac{D}{2})$ in the above relations.
the DD and is given by
\[r_{D}(w) = \frac{[H_{D}(w)j - w]}{w} = H_{D}(w)(jw) - 1, \]
\[-\pi \ll w \ll \pi. \]
(5)

At the extremal frequencies \(w \), we have constant ripple peaks. Let
\[D^{(V)}(w) \approx A'(a \text{ constant}), \quad \pi \ll w \ll \pi. \]
(6)

Obviously the frequencies \(w_{v} \)'s correspond to the solutions of \(d r_{D}(w)/dw = 0 \). Differentiating (5) with respect to \(w \) and equating to zero, we get
\[w_{v} = H_{D}(w)/H'_{D}(w), \quad -\pi \ll w \ll \pi. \]
(7)

From (5) and (7), we obtain
\[r_{D}(w) = \frac{H'_{D}(w)}{j - w} = H_{D}(w)/(jw) - 1, \]
\[-\pi < w < \pi. \]
(8a)

Equations (6) and (8b) show that \(H'_{D}(w)/j \) represents the frequency response of an equiripple all-pass filter, as expected, the ripple extrema occurring at frequencies \(w_{v} = w_{h} \) and the magnitude of the ripple peaks being equal to \(K \).

Thus, if we choose the frequency response \(H_{H}(w) \) such that
\[H_{H}(w) = -H'_{D}(w), \quad 0 < w < \pi \]
(9)

which gives the frequency response
\[H_{H}(w) = \frac{-4/\pi}{sin w + \frac{1}{3}sin 3w} \frac{1}{5}sin 5w \]
\[+ \cdots + \frac{1}{n}sin nw, \quad -\pi < w < \pi; \]
\[n = (N - 1)/2 \]
(10a)

C. Relations Between \(H_{H}(w) \) and \(H_{L}(w) \) and Between \(H_{D}(w) \) and \(H_{L}(w) \)

Taking \(N \) samples (symmetrical about \(n = 0 \)), from Fig. 1(e), the transfer function of an approximation \(H_{D}(z) \) of a causal, FIR DHT can be written as
\[H_{D}(z) = z^{-iN-1/2} \sum_{n=-N}^{N} h_{D}(z)^{n}, \quad n = (N - 1)/2 \]
\[= \frac{2}{\pi} - \frac{1}{2} \sum_{n=1}^{N} \frac{1}{n} \frac{1}{n+1} \frac{sin w}{w} \]
\[+ \frac{1}{n} \frac{1}{n+1} \frac{sin (n+1)w}{w} \quad \pi \leq w \leq \pi; \]
(10b)

Equations (6) and (8b) show that \(H'_{D}(w)/j \) represents the frequency response of an equiripple all-pass filter, as expected, the ripple extrema occurring at frequencies \(w_{v} = w_{h} \) and the magnitude of the ripple peaks being equal to \(K \).

Thus, given a minimax relative error DD, \(H_{D}(w) \), we can always transform it to an equiripple DHT, \(H_{H}(w) \), using the transformation (9); the ripple peaks of \(H_{D}(w) \) and \(H_{H}(w) \) occur at the same respective frequencies with equal magnitude \(K \).
TABLE II
VARIOUS PARAMETERS FOR THH DHT'S AND 1/2-LPF'S DERIVED, THROUGH TRANSFORMATION, FROM MINIMAX RELATIVE ERROR DD'S [11]

<table>
<thead>
<tr>
<th>S.No.</th>
<th>Parameter</th>
<th>DD</th>
<th>DHT</th>
<th>1/2-LPF</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Ideal Frequency Response</td>
<td>$\mathcal{H}_0(w) = e^{-j\pi }$</td>
<td>$H_{\text{DHT}}(w)$, 0 < ω < π</td>
<td>$\mathcal{H}_{\text{DHT}}(w)$, 0, elsewhere</td>
</tr>
<tr>
<td>2.</td>
<td>Frequency Response of derived filters</td>
<td>$H_{\text{DHT}}(w) = \mathcal{H}n(w) = \sum{i=1}^{n} e^{j\pi i \omega }$</td>
<td>$H_{\text{DHT}}(w)$, 0 < ω < π</td>
<td>$\mathcal{H}_{\text{DHT}}(w)$, 0, elsewhere</td>
</tr>
<tr>
<td>3.</td>
<td>Ripple signals</td>
<td>$r_{\text{DHT}}(w) =</td>
<td>H_{\text{DHT}}(w) - 1</td>
<td>$</td>
</tr>
<tr>
<td>4.</td>
<td>Ripple extrema</td>
<td>at $w = \omega_j$</td>
<td>at $w = \omega_j$</td>
<td>at $w = \omega_j$</td>
</tr>
<tr>
<td>5.</td>
<td>Ripple peaks magnitude</td>
<td>$r_{\text{DHT}}(w)$</td>
<td>K</td>
<td>$K/2$</td>
</tr>
</tbody>
</table>

\[
 H_{\text{DHT}}(w) = \begin{cases}
 1 & 0 < \omega < \pi/2 \\
 -jH_{\text{DHT}}(\omega + \pi/2) & \pi/2 \leq \omega \leq \pi \\
 1 & \omega = \pi \\
 jH_{\text{DHT}}(\omega - \pi/2) & \pi \leq \omega < 2\pi \\
 0 & \omega = 2\pi
 \end{cases}
\]

\[
 H_{\text{DHT}}(w) = \begin{cases}
 1 & 0 < \omega < \pi/2 \\
 -jH_{\text{DHT}}(\omega + \pi/2) & \pi/2 \leq \omega \leq \pi \\
 1 & \omega = \pi \\
 jH_{\text{DHT}}(\omega - \pi/2) & \pi \leq \omega < 2\pi \\
 0 & \omega = 2\pi
 \end{cases}
\]

\[
 H_{\text{DHT}}(w) = \begin{cases}
 1 & 0 < \omega < \pi/2 \\
 -jH_{\text{DHT}}(\omega + \pi/2) & \pi/2 \leq \omega \leq \pi \\
 1 & \omega = \pi \\
 jH_{\text{DHT}}(\omega - \pi/2) & \pi \leq \omega < 2\pi \\
 0 & \omega = 2\pi
 \end{cases}
\]

\[
 H_{\text{DHT}}(w) = \begin{cases}
 1 & 0 < \omega < \pi/2 \\
 -jH_{\text{DHT}}(\omega + \pi/2) & \pi/2 \leq \omega \leq \pi \\
 1 & \omega = \pi \\
 jH_{\text{DHT}}(\omega - \pi/2) & \pi \leq \omega < 2\pi \\
 0 & \omega = 2\pi
 \end{cases}
\]

\[
 H_{\text{DHT}}(w) = \begin{cases}
 1 & 0 < \omega < \pi/2 \\
 -jH_{\text{DHT}}(\omega + \pi/2) & \pi/2 \leq \omega \leq \pi \\
 1 & \omega = \pi \\
 jH_{\text{DHT}}(\omega - \pi/2) & \pi \leq \omega < 2\pi \\
 0 & \omega = 2\pi
 \end{cases}
\]

From (14b) and (16b), we obtain

\[
 H_{\text{DHT}}(w) = \begin{cases}
 1 & 0 < \omega < \pi/2 \\
 -jH_{\text{DHT}}(\omega + \pi/2) & \pi/2 \leq \omega \leq \pi \\
 1 & \omega = \pi \\
 jH_{\text{DHT}}(\omega - \pi/2) & \pi \leq \omega < 2\pi \\
 0 & \omega = 2\pi
 \end{cases}
\]

It is easy to show that $H_{\text{DHT}}(w + \pi/2)$, $\pi/2 \leq \omega \leq \pi$, and also $H_{\text{DHT}}(w + 2\pi)$, $\pi \leq \omega < 2\pi$, are both equivalent to $H_{\text{DHT}}(w')$, $0 \leq \omega' \leq \pi$. Hence, from (9) and (17), we get

\[
 H_{\text{DHT}}(w) = \begin{cases}
 1 & 0 < \omega < \pi/2 \\
 -jH_{\text{DHT}}(\omega + \pi/2) & \pi/2 \leq \omega \leq \pi \\
 1 & \omega = \pi \\
 jH_{\text{DHT}}(\omega - \pi/2) & \pi \leq \omega < 2\pi \\
 0 & \omega = 2\pi
 \end{cases}
\]

which is the relation connecting DD and the 1/2-LPF.

Using (8b) and (18), we can also write

\[
 H_{\text{DHT}}(w) = \begin{cases}
 1 & 0 < \omega < \pi/2 \\
 -jH_{\text{DHT}}(\omega + \pi/2) & \pi/2 \leq \omega \leq \pi \\
 1 & \omega = \pi \\
 jH_{\text{DHT}}(\omega - \pi/2) & \pi \leq \omega < 2\pi \\
 0 & \omega = 2\pi
 \end{cases}
\]

Clearly, (19) shows that $H_{\text{DHT}}(w)$ is the frequency response of equiripple 1/2-LPF with ripple contents $r_{\text{DHT}}(w)$ given by

\[
 r_{\text{DHT}}(w) = \begin{cases}
 5 & \pi/2 < \omega < \pi \\
 3 & \pi/2 \leq \omega \leq \pi \\
 1 & 0 \leq \omega < \pi/2 \\
 0 & \omega = \pi \\
 -1 & \pi \leq \omega < 2\pi \\
 0 & \omega = 2\pi
 \end{cases}
\]

The ripple peaks of $H_{\text{DHT}}(w)$ are of magnitude $f/2$ and occur at frequencies $w = \pi$, $\pi/2$.

[Diagram: Ideal 1/2-LPF, DHT, and 1/2-LPF with ripple contents]
Fig. 3. Frequency responses for (a) Given minimax relative error DDL \(F_p = 0.48, N = 47 \), the corresponding DHT's \(N = 0.48 \), and 1/2-LPF's were derived. Their frequency responses able savings in the memory space in digital processing between the subject filters. These can also affect consider-tivity and give a clear insight into the connection be-

corresponding values for the minimax relative error dif-

precise frequencies of ripple extrema and the magnitudes also their frequency responses have been brought out. The

table II gives the various transformational relations for frequency responses, the ripple signals, their extremal frequencies together with the magnitude of the ripple peaks. It establishes the proximity of minimix relative error DDs to equiripple DHT's and equiripple 1/2-LPF's.

III. PERFORMANCE

Making use of the relations of Table I and taking data for minimax relative error DD's from [1], for \(F_p = 0.45 \), \(N = 17 \) and \(F_p = 0.48 \), \(N = 47 \), the corresponding DHT's and 1/2-LPF's were derived. Their frequency responses are shown in Figs. 2 and 3, respectively. The results agree with the theoretical values with regard to the equiripple nature, the ripple magnitudes and the extremal frequen-
cies, etc.

IV. CONCLUSION

It has been shown that the minimax relative error digital differentiators can easily be transformed to equiripple digital Hilbert transformers and equiripple half-band low-pass filters. Relations connecting their impulse responses and also their frequency responses have been brought out. The precise frequencies of ripple extrema and the magnitudes of their peaks are also shown to be simply related to the corresponding values for the minimax relative error differ-

erentiators. The proposed relations portray the picture in totality and give a clear insight into the connection be-
 tween the subject filters. These can also affect consider-
able savings in the memory space in digital processing systems since the coefficients for Hilbert transformers are seen to be readily obtainable from those of the digital differentiators, obviating the necessity for their separate tab-

ulation as done in [1] and [2]. It is concluded that the
digital differentiators, the digital Hilbert transformers, and the digital half-band low-pass filters belong to a very closely knit family of filters.

REFERENCES

Balbir Kumar was born on March 24, 1941 at Sialkot, India. He received the B.A. (Hons.) degree in mathematics and the B.Sc. Engineering (Hons.) degree in electrical engineering from Punjab University, Chandigarh, India, in 1969 and 1963, respectively. He received the M. Tech. degree in electrical engineering from the Indian Institute of Technology (IIT), Delhi, in 1972.

He served in the Indian Navy from 1963 to 1985 in various capacities, including those of Instructor, Project Officer, Electrical Officer, and Deputy Director, and took premature retirement in the rank of Commander. He worked towards the Ph.D. degree in signal processing at IIT Delhi under the guidance of Professor S. C. Dutta Roy till early 1988 and submit-ted his thesis soon thereafter. Since May 1988, he has been working as an Assistant Professor of Electronics and Communication Engineering at the Delhi Institute of Technology, Delhi, India.

Mr. Kumar is a Fellow of the Institution of Electronics and Telecommu-
nication Engineers, India, and the Institution of Engineers, India.

Suhash C. Dutta Roy was born on November 1, 1937, in Mymensingh, now in Bangladesh. He received the B.Sc. (Hons.) degree in physics, the M.Sc. (Tech.) degree in radio physics and electronics, and the D.Phil degree for research on network theory and solid state circuits, all from the University of Calcutta, Calcutta, India, in 1956, 1959 and 1965, respectively.

He has been a Professor of Electrical Engi-
neering at the Indian Institute of Technology (IIT), New Delhi, since January 1970. He was the Head of the Electrical Engineering Department from 1970-1973 and the Dean of Undergraduate Studies from 1983-1986. Previously, he served the IIT as an Associate Professor (1966-1969); the University of Minnesota, Min-
neapolis, as an Assistant Professor (1965-1968); the University of Kaly-
nani, West Bengal, India, as a Lecturer (1961-1965); and the River Re-
search Institute, West Bengal, India, as the Research Officer, Electronics (1960-1961). He was a Visiting Professor at the University of Leeds, En-
gland, from 1973-1974, and a Visiting Fellow at the Iowa State Univer-
sity, Ames, from 1978-1979, on leave from IIT Delhi. He teaches circuits, systems, electronics and signal processing courses, and conducts and supervises research in the same areas.

Dr. Dutta Roy is a Fellow of the Indian National Science Academy, the Indian National Academy of Engineering (INAЕ), the Indian Academy of Sciences, and the Institution of Electronics and Telecommunication Engi-

ers (IETE). He has served on the Editorial Boards of International Jour-
nal of Circuit Theory and Applications, IEEE TRANSACTIONS ON INSTRU-
MENTATION AND MEASUREMENT, Indian Journal of Pure and Applied Physics, and Journal of the IETE, and was an Honorary Editor for the last journal during 1981-1983. He was a member of the Indian National Committee of the URSI, and was also a member of the Commission C on Signals and Systems from 1981-1988. He is currently the Editor of Publications of the INAE and a Member of the IETE Council. He is also the recipient of the Shanti Swarup Bhatnagar Award, Vikram Sarabhai Award, Om Prakash Bhasin Foundation Award, Ram Lal Wadhwia Gold Medal, Meghnad Saha Memorial Award, and National Lectureship Award of the University Grants Commission.