DESIGN OF ANTENNAS FOR MILLIMETER WAVE
5G APPLICATIONS

ZAMIR AHMAD WANI

CENTRE FOR APPLIED RESEARCH IN ELECTRONICS
INDIAN INSTITUTE OF TECHNOLOGY DELHI
SEPTEMBER 2020
DESIGN OF ANTENNAS FOR MILLIMETER WAVE 5G APPLICATIONS

by

ZAMIR AHMAD WANI

Centre for Applied Research in Electronics

Submitted in fulfillment of the requirements of the degree of Doctor of Philosophy to the

INDIAN INSTITUTE OF TECHNOLOGY DELHI
SEPTEMBER 2020
To my mother and father
CERTIFICATE

This is to certify that the thesis entitled, “DESIGN OF ANTENNAS FOR MILLIMETER WAVE 5G APPLICATIONS”, being submitted by Mr. Zamir Ahmad Wani for the award of the degree of Doctor of Philosophy to the Centre for Applied Research in Electronics, Indian Institute of Technology Delhi, New Delhi, is a record of bonafide research work carried out by him under our guidance and supervision.

Mr. Zamir Ahmad Wani has fulfilled the requirements for the submission of this thesis, which to our knowledge has reached the requisite standard. The results contained in this thesis have not been submitted in part or in full to any other university or institute for the award of any degree or diploma.

Prof. Mahesh P. Abegaonkar
Associate Professor
Centre for Applied Research in Electronics
Indian Institute of Technology Delhi
Hauz Khas, New Delhi-110016, India

Prof. Shiban K. Koul
Emeritus Professor
Centre for Applied Research in Electronics
Indian Institute of Technology Delhi
Hauz Khas, New Delhi-110016, India
ACKNOWLEDGEMENTS

First, I am deeply indebted to my supervisors Prof. Shiban K Koul and Prof. Mahesh P Abegaonkar, for allowing me to be a part of the Microwave group at CARE, IIT Delhi and let me to work under their supervision.

I want to sincerely thank Prof. Mahesh P Abegaonkar for his continuous support and guidance right from start to the completion of the thesis. The technical discussions we had, and his evaluation of the research work helped me to achieve publishable results. Giving me the full academic freedom during the course really helped me to enjoy my past few years. He helped me to come up with the thesis topic and guided me throughout the thesis.

I would like to express my sincere gratitude and admiration to Prof. Shiban K Koul for his motivation and support given to me throughout my research work. The discussions we had helped me achieve the research goals. The motivation after each time meeting him helped me to stay focused and work harder. His moral support kept me going during difficult times. I really feel privileged to work under his guidance and witness his intriguing lectures on RF and Microwave Circuits.

I want to give special thanks to Prof. Ananjan Basu, my research committee member for his critical comments on the work during research seminars which helped in improving the work. I thank Prof. Arun Kumar and Prof. Saif K Mohammad, members of my research committee, for giving time and suggestions.

I extend my thanks to Mr. Shakti Singh for helping me with the fabrication and discussions we had over coffee. Also, my thanks to my colleagues, Harikesh, Pranav, Dr. Karthikeya, Dr. Amit Kumar, Dr. Saurabh, Dr. Rajesh, Dr. Deepika Sipal, Dr. Anushruti Jaiswal, Sriparna, Somia,
Swapna and Dr. Ayushi Barthwal, Mr. Ashok helped me in fabricating very fine sub-wavelength resonators.

Thanks to the Kashir Baradari at IITD for all the “non-research” discussions over tea, which temporarily took off the PhD pressure.

I express my gratitude to my teachers, who helped me to reach this stage. Prof. Dinesh Kumar from IIIT Jabalpur, Dr. Javaid, and Dr. Shabir from KU are duly acknowledged.

I acknowledge Visveswaraya PhD Scheme of MEITY, GOI for providing financial support during my PhD.

Lastly, I owe my deepest gratitude to my loving parents who have always believed in me. They have always supported and encouraged me to do best in life. Thanks to my brother’s Mr. Arif and Dr. Mukhtar for always supporting me throughout my life. Special thanks to Dr. Nadia for continuous support and love that helped me complete this thesis.

Zamir Wani
ABSTRACT

The research work presented in the thesis is primarily focussed on the design of millimeter wave 5G antennas. Based upon the requirements for the implementation of millimeter wave wireless communication systems, four antenna topologies are presented to counter the issues at millimeter wave 5G communication.

First, a three-element quasi Yagi-Uda antenna array with printed metamaterial surface generated from the array of uniplanar capacitively-loaded loop (CLL) unit-cells printed on the substrate operating in the band 25-30 GHz with 18dB isolation between the ports is presented. The measured peak gain of 11dBi is achieved for all the antenna elements. The three antenna elements radiate in three different directions and cover a radiation scan angle of 64°. This wide angular coverage would be useful to maintain the communication link between the transmitter and receiver.

A four port mmWave multi-input-multi-output (MIMO) antenna with a small size of 11.3 mm × 31 mm is presented. Each antenna element has an end-fire gain of about 10dBi by employing an array of metamaterial unit cells. The isolation between the antenna elements with edge to edge separation < \lambda_0/5.5 at 28 GHz is enhanced by trimming the corners of the rectangular metamaterial region along with a ground stub between antennas. The prototype antenna covers 26-31 GHz band with return loss > 10 dB and isolation > 21 dB. The second design is two port MIMO antenna for 28 GHz band which has dual-beam radiation for each port. The proposed antenna can cover a large radiation area owing to pattern diversity with radiation along \phi = 60° and \phi = 120° when port 1 is excited and along \phi = 150° and \phi = 210° when port 2 excited.

A new technique of electromagnetic wave routing using single-epsilon-high anisotropic media to generate dual-beam radiation at 28-GHz band. This technique is implemented using SIW
dipole antenna loaded with the single-epsilon-high anisotropic media realized using modified asymmetric electric-LC (ELC) metamaterial unit cell loaded vertically in front of the radiator. The effect of the media thickness loaded to the antenna is investigated and dual-beam radiation in the frequency band 26-31 GHz is obtained by choosing the appropriate number of ELC-slabs. The measured results confirm 26-31 GHz impedance bandwidth and dual-beam radiation directed along 50° and 130° with 8dBi beam peaks.

In the last part, mmWave lens antennas are presented for gain enhancement and multibeam MIMO applications. A simple technique of phase correction for gain enhancement using stacked dielectric slabs atop a microstrip patch antenna for 28-GHz application is presented. This arrangement of dielectric slabs enhances the gain of the patch antenna by 4.1dB when loaded to the antenna. Further, a novel technique employing high and low epsilon (HLE) biaxial anisotropic media to enhance the gain of any linearly polarized antenna is presented. The realization of the HLE media using metamaterials is presented which results in a flat 3D lens having $1.9\lambda^2_0$ physical area. The HLE lens has an aperture efficiency of 99% when loaded to a patch antenna with a broadside thickness of $0.6\lambda_0$ at 28 GHz. To further validate the performance, metamaterial lens is loaded to the SIW fed aperture coupled patch antenna, a realized peak gain of 13.6dBi is achieved with 6% 1-dB gain bandwidth which confirms the applicability of this gain enhancement technique for wider frequency range than the zero-index media/resonant cavity techniques. Lastly, a thin planar metasurface (MS) lens is presented for mmWave MIMO applications. The designed MS lens is polarization insensitive and has a peak aperture efficiency of 24.7% when loaded to a three-port antenna array. The MS lens loaded to three antenna array results in a peak gain of 20.2dBi and beam scanning from -15° to $+15^\circ$ is achieved.
सारांश

थीसिस में प्रस्तुत शोध कार्य मुख्य रूप से मिलीमीटर वेब 5G एंटेना के डिजाइन पर केंद्रित है। मिलीमीटर वेब वायरलेस संचार प्रणालियों के कार्यन्वयन की आवश्यकताओं के आधार पर, चार एंटीना टोपोलॉजी प्रस्तुत की गयी हैं।

सबसे पहले, एक तीन-एलिमेंट अर्थ यादि उद्दा एंटीना ऐसे प्रिंटेड मेटामेरियल सर्फेस से बनाया गया है, जो कि 25 से 30 गीगाहर्टज के बैंड में संचालित होगा और साथ में 18 डीबी का पोर्ट इसोलअश्युन होगा। सब एंटीना एलिमेंट्स में मापा हुआ गेन 11 डीबी प्राप्त हुआ है। तीन एंटीना एलिमेंट्स , तीन अलग-अलग दिशाओं में रेडिएट करते हैं और 64 डिग्री के रेडिएशन रेंज एंगल को कवर करते हैं। यह विस्तृत कोणीय कवरेज ट्रांसमीटर और रिसीवर के बीच संचार लिंक को बनाई रखने के लिए उपयोगी होगा।

एक कॉम्पैक्ट आकार के साथ एक चार पोर्ट मिलीमीटर वेब मल्टी-इनपुट-मल्टी-आउटपुट एंटीना प्रस्तुत किया गया है। प्रत्येक एंटेना एलिमेंट में मेटामेरियलअल यूनिट सेल की एक ऐसे को उपयोग करके लगभग 10 डीबी का गेन एंड-फायर दिशा में प्राप्त किया गया है। 28 गीगाहर्टज पर एंटीना एलिमेंट्स के बीच के आइसोलेशन को, एक प्रायोंड स्टब के साथ मेटामेरियल के कोणों को ट्रिम करके बढाया गया है। प्रोटोटाइप एंटीना में 26-31 गीगाहर्टज बैंड है जिसमें रिटर्न लॉस 10 डीबी से और आइसोलेशन 21 डीबी से अधिक है। दूसरा डिजाइन 28 गीगाहर्टज बैंड के लिए दो पोर्ट मीमो एंटीना है जिसमें प्रत्येक पोर्ट के लिए दो बीम हैं। प्रस्तावित एंटीना 60 डिग्री और 120 डिग्री के साथ साथ 150 और 210 डिग्री में रेडिएट करने के कारण एक बड़े क्षेत्र को कवर कर सकता है।

28-गीगाहर्टज बैंड पर दो बीम उत्पन्न करने के लिए एकल-एसिलोन-उच्च अनिसोट्रोपिक मीडिया का उपयोग करते हुए इलेक्ट्रोमाग्नेटिक रूटिंग की एक नई तकनीक का उपयोग किया गया है। यह तकनीक एसआईडब्लू फेड एंटेना के साथ लोड की गई एकल-एसिलोन-उच्च अनिसोट्रोपिक मीडिया के साथ संशोधित एसिमिट्रिक ईलासी मेटामेरियल यूनिट सेल का उपयोग करके रेडिएट करके सामने लंबवत रखकर लागू की गई है। एंटीना में लोड की गई मीडिया मोटाई के प्रभाव की जांच की गयी है और आवृत्ति बैंड 26-31 गीगाहर्टज में ड्यूल बीम रेडिएशन को प्राप्त करने हेतु ईलासी-स्लैब की उचित संख्या का प्रयोग किया गया है। मापा परिणाम के अनुसार 26-31 गीगाहर्टज इमिडेंस बैंडविद्ध और ड्यूल बीम डायरेक्शन 50 डिग्री और 130 डिग्री पे प्राप्त हुआ है, जिसका गेन 8 डीबी है।
अंतिम भाग में, मिलिमीटर वेब लेंस एंटीना का प्रयोग गेन में वृद्धि तथा मल्टीबीम मीमो अनुप्रयोगों के लिए प्रस्तुत किया गया है। 28-गीगाहर्ट्ज़ एप्लिकेशन के लिए एक माइक्रोस्ट्रिप पैच एंटीना के ऊपर स्टैक्ड दलेविक्ट्रॉक स्लैब का उपयोग करके लाभ बढ़ाने के लिए एक सरल तकनीक प्रस्तुत की गई है। स्टैक्ड दलेविक्ट्रॉक स्लैब की वह व्यवस्था एंटीना पर लोड करने पर गेन में 4.1 डीबी तक की वृद्धि हुई है। इसके अलावा, किसी भी लीनियर पोलरिजेशन एंटीना का गेन को बढ़ाने के लिए उच्च और निम्न एप्लिकेशन व्याकिसिअल एनिसोट्रोपिक मीडिया उपयोग किया गया है। मेटामटेरिअल का उपयोग करते हुए उच्छ निम्न एप्लिकेशन मीडिया की प्रस्तुत किया गया है। जिसके परिणामस्वरूप एक फ्लैट 3 डी लेंस बनाया गया है, जिसमें 1.9 लेम्ब्डा वर्ग भौतिक क्षेत्र है। 28 गीगाहर्ट्ज़ पर 0.6 लेम्ब्डा की मोटाई के साथ पैच एंटीना पर लोड होने पर व्याकिसिअल लेंस की 99 प्रतिशत एपर्चर दक्षता है। प्रदर्शन को और अधिक मान्य करने के लिए, अपर्चर कपल्ड पैच पर मेटामटेरिअल लेंस लोड किया गया है, 13.6 डीबी का गेन, 6 प्रतिशत 1-डीबी गेन बैंडविद्ध के साथ हासिल किया गया है, जो व्याक आवृत्ति रेंज की तुलना में इस लाभ वृद्धि तकनीक की प्रमाणित की पुष्टि करता है। अंत में, एक तरल प्लानर मेटासुरफेस लेंस को मिलिमीटर वेब मीमो अनुप्रयोगों के लिए प्रस्तुत किया गया है। डिजाइन किया गया एमएस लेंस पोलरीजेशन असंवेदनशील है और तीन-पोर्ट एंटीना ऐरे में लोड होने पर 24.7 प्रतिशत की शिखर एपर्चर क्षमता है।
TABLE OF CONTENTS

CERTIFICATE .. I

ACKNOWLEDGEMENTS .. II

ABSTRACT ... IV

TABLE OF CONTENTS ... VIII

LIST OF FIGURES .. XI

LIST OF TABLES .. XVIII

1. INTRODUCTION .. 1

 1.1 Millimeter Waves for Gigabit Wireless Communication .. 1

 1.2 The 28-GHz Band .. 2

 1.2.1 Channel Measurements .. 3

 1.2.2 Link budget .. 4

 1.3 Millimeter Wave MIMO ... 6

 1.4 mmWave Antennas for MIMO ... 7

 1.5 Dual-Beam Millimeter Wave Antennas .. 10

 1.6 Millimeter Wave Lens Antennas ... 14

 1.7 Scope and Objectives .. 17

 1.8 Thesis Organization .. 18

2. ANTENNA WITH WIDE-SCAN COVERAGE FOR MILLIMETER-WAVE
 APPLICATIONS .. 21

 2.1 Introduction .. 21

 2.2 Gain Enhancement and Beam Tilting Using Metamaterial Loading 22

 2.2.1 The CLL Unit Cell ... 22

 2.2.2 Gain Enhancement ... 24

 2.2.3 Beam Tilting ... 29
2.3 Wide-Scan Antenna Array with Metamaterial Loading .. 31
2.4 Measurement Results ... 37
2.5 Conclusion .. 43

3. MILLIMETER WAVE MIMO ANTENNAS FOR 5G APPLICATIONS 44
 3.1 Introduction ... 44
 3.2 MIMO Antenna Design ... 45
 3.2.1 Two Element MIMO Configuration ... 45
 3.2.2 Four Antenna MIMO Configuration ... 49
 3.2.3 Measurement Results .. 50
 3.3 Dual-Beam MIMO Antenna ... 55
 3.3.1 Antenna Design ... 56
 3.3.2 Measurement Results and MIMO Performance .. 57
 3.4 Conclusion .. 62

4. DESIGN OF DUAL-BEAM ANTENNA USING SINGLE-EPSILON-HIGH
 ANISOTROPIC MEDIA .. 63
 4.1 Introduction ... 63
 4.2 Theory of Single-Epsilon-High Anisotropic Media .. 63
 4.3 Dual-Beam Radiation using Single-EH Anisotropic Media ... 71
 4.3.1 Dipole Antenna Loaded with Single-EH Media .. 72
 4.3.2 Realization of Single-EH Anisotropic Media ... 75
 4.3.3 SIW Dipole Antenna loaded with Single-EH Media ... 79
 4.4 Prototype and Experimental Results .. 82
 4.5 Conclusion .. 86

5. MILLIMETER WAVE LENS ANTENNAS ... 88
 5.1 Introduction ... 88
5.2 Stacked Dielectric Superstrate for Gain enhancement... 88
 5.2.1 Design and Working Mechanism... 89
 5.2.2 Experimental Results and Discussion.. 92
5.3 Design of High-Low-Epsilon Anisotropic Lens for Gain Enhancement.................. 95
 5.3.1 Theory and Mechanism of HLE Lensing... 95
 5.3.2 Gain Enhancement using HLE Slab .. 99
 5.3.3 Realization of HLE Lens using Metamaterials.. 104
 5.3.4 Linearly Polarized Antenna with MTM Lens... 106
 5.3.5 Prototype and Experimental Results.. 109
5.4 Thin Planar Metasurface Lens for mmWave MIMO Applications.......................... 117
 5.4.1 Configuration and Design of Thin Planar Lens... 117
 5.4.2 Aperture Coupled Antenna Array and Planar Lens 122
 5.4.3 Prototype and Experimental Results.. 125
5.5 Conclusion... 128

6. CONCLUSION AND FUTURE SCOPE .. 129
 6.1 Conclusion... 129
 6.2 Future Scope... 131

REFERENCES ... 133

PUBLICATIONS .. 145

BRIEF BIO-DATA OF THE AUTHOR .. 147
LIST OF FIGURES

Fig. 1. 1. Maximum coverage with 10 dB SNR vs combined Tx-Rx antenna gain for different path loss exponent n [5].--- 4

Fig. 1. 2. Wide-scan MIMO antenna array with spherical grooved-lens and radiation pattern [23].-- 8

Fig. 1. 3. Dual-beam Bow-tie antenna with artificially modified high permittivity loading on both sides and pattern at 60 GHz [49].--- 12

Fig. 1. 4. (a) Architecture of digital beamforming array with (b) four layer planar lens [81].---- 16

Fig. 2. 1. (a) Geometrical description of the unit cell ($a_x=1.64$ mm, $a_y=1$ mm, $L_1=1.4$ mm, $L_2=0.6$ mm, $W_1=0.8$ mm, $g=0.2$ mm) (b) S-parameters and (c) retrieved real part of refractive index (Re(n_{eff})), effective permittivity (Re(ϵ_{eff})) and permeability (Re(μ_{eff})) from simulated S-parameters.--- 23

Fig. 2. 2. (a) Geometry of dipole antenna (b) $|S_{11}|$ dB and (c) xoy-plane radiation pattern.------ 25

Fig. 2. 3. Dipole antenna with metamaterial loading (a) antenna geometry ($W = 12, L = 18, W_g = 8, L_g = 6.8, L_n = 7.8, w_d = 0.5, W_f = 0.77, G_s = 1.24, h_y = 1$) all dimensions in millimeters (b) simulated and measured $|S_{11}|$ of the dipole w/ML.------- 26

Fig. 2. 4. (a) Power flow distribution of the dipole antenna with (w) and without (wo) metamaterial loading (b) phase profile of electric field w/wo ML.----------------------------- 27

Fig. 2. 5. (a) Measured and simulated E-plane radiation pattern at 28 GHz in XY-plane with (w/ML) and without metamaterial loading (wo/ML) (b) gain curve comparison w/ML and wo/ML.-- 28

Fig. 2. 6. (a) Dipole with offset metamaterial loading (w/ML-offset), (b) photograph of fabricated prototype and (c) reflection coefficient of the antenna with offset loading.------- 29

Fig. 2. 7. (a) Mechanism of beam tilting (b) measured and predicted normalized gain pattern in xoy plane at 28 GHz without ML (wo/ML), with offset metamaterial loading (ML) in +x and –x.--- 30

Fig. 2. 8. Three element antenna with metamaterial loading (dimensions (mm): $W_x = 20, W_y = 9.8, W = 0.5, W_b = 1.9, L_d = 4.7, D_1 = 3, h = 1.2, d = 5.4, L_d = 4.7, G_p = 1.24$).-- 32
Fig. 2. 9. Effect of Gap ‘Gp’ on |S22| of the antenna-A2 (‘Gp’ in millimeters).

Fig. 2. 10. E-field distribution at 28 GHz of three-element antenna array without and with metamaterial loading when three different ports are excited.

Fig. 2. 11. E-plane radiation pattern of the 3-port antenna with (w/ML) and without metamaterial loading (wo/ML) at 28 GHz (b) 3D radiation pattern for antennas-A1, A2 and A3.

Fig. 2. 12. (a) Photograph of the fabricated prototype and measurement setup (b) Measured and simulated reflection coefficient (c) Measured and simulated coupling between all the ports.

Fig. 2. 13. The comparison of gain of the antenna element A1 and A2 with (w/ML) and without (wo/ML) metamaterial loading.

Fig. 2. 14. Measured and predicted normalized gain pattern in E-plane of three-element antenna array with metamaterial loading at (a) 27GHz, (b) 28GHz and (c) 29GHz (Blue: Port1, Black: Port2 and Red: Port3; Solid line: Simulated, Dashed line: Measured).

Fig. 2. 15. Envelope correlation coefficient between ports A1&A2, A2&A3 and total efficiency of the antennas.

Fig. 2. 16. Multiplexing efficiency and diversity gain vs frequency for the antennas.

Fig. 3. 1. Extracted real part (Re) of refractive index (n), effective permittivity (\(\varepsilon_{\text{eff}}\)) and permeability (\(\mu_{\text{eff}}\)) from S-parameters.

Fig. 3. 2. Geometry of two element MIMO antenna with array of unit cells. Zoomed view of dipole and unit cell along with Case-I: without trimming and Case-II: with trimming of corners. (Scc = 5.8, Sdd = 1.9, wi = 0.77, he = 10.7, ld = 4.7, wd = 0.5, wsb = 0.2, lsb = 1.8, ut = 0.2, sdu = 1.2, ux = 1.4, uy = 0.8, all dimensions in millimeters).

Fig. 3. 3. Isolation between dipole antennas (a) as a function of stub length (lsb) (b) without corner trimming (Case I), with corner trimming (Case II), without any CLL array (wo/CLL) and if individual CLL unit cells are removed.

Fig. 3. 4. Snapshot of the H-field in XY-Plane depicting the mutual coupling between the antennas when Port 1 is fed for the Case-I and Case-II at 30 GHz.

Fig. 3. 5. Proposed four port MIMO antenna configuration geometry. (W = 31, L = 48, wl = 10.4, he = 10.7, hg = 6.2, Shd = 2.2, dimensions in mm).
Fig. 3. 6. Port performance of the antenna (a) Photograph of the prototype antenna and measurement setup (b) measured and simulated reflection coefficient and (c) measured and simulated coupling between antennas.----------------------------------

Fig. 3. 7. Measured and simulated normalized gain patterns in XOY-plane at 28 GHz when different ports are excited (Red: Simulated, Black: Measured). ----------------------------------

Fig. 3. 8. Gain pattern of the antenna for ports P1 and P2 at 29 GHz and 30 GHz. ---------

Fig. 3. 9. Envelope correlation coefficient between ports 1&2, 1&4 and gain of the antenna element 1 vs frequency.---

Fig. 3. 10. (a) Multiplexing efficiency between port 1 and 2 and total efficiency (b) ergodic capacity of the prototype antenna 1 and 2 vs SNR.----------------------------------

Fig. 3. 11. Dual-beam MIMO antenna geometry. (Sdd = 1.8, wf = 0.77, ld = 4.7, wd = 0.5, lg = 20.6, lf = 11.9, Sd = 6.6, All dimensions in millimeters).------------------------

Fig. 3. 12. (a) Photograph of the fabricated prototype antenna (b) measured and simulated S-parameters of the dual-beam MIMO antenna.-------------------------------

Fig. 3. 13. (a) The surface current distribution for port 1 and (b) E-field plot for port-1&2 along X-axis and Y-axis for cut plane (Z = 0.5mm, ωt = 0). --------------------------

Fig. 3. 14. 3D radiation pattern of the dual-beam antenna for ports P1 and P2 at 28 GHz. ------

Fig. 3. 15. Measured and simulated E-plane radiation pattern of the proposed antenna when excited at two ports for (a) 27 GHz, (b) 28.5 GHz and (c) 30 GHz.-----------------------

Fig. 3. 16. Simulated ECC and gain of the dual-beam MIMO antenna for the frequency band. -

Fig. 4. 1. (a) Iso-frequency contour of TM (red) and TE waves (blue) for the 2D plane z=0 (b) Schematic of the plane waves excited on the single-EH media with and without slant. -----

Fig. 4. 2. The transmission of TM waves in single-EH media (a) reflection and refraction angle at air-SEH interface with slant (α = 20) and no-slant boundary (red curve) (b) reflection at SEH-air interface with slanted (α) and no-slant boundary.--------------------------

Fig. 4. 3. Comparison of the power flow (Px —power along x-direction, Py —power along y-direction and PT —total power) at the slanted boundary for isotropic media and single-EH media.---
Fig. 4.4. Dual-beam generation using single-EH media from a Gaussian beam (a) Iso-frequency contour at exit boundary (bb') between single-EH media (which is an ellipse) and free-space (a circle) (b) magnitude of electric field components and transverse magnetic field.

Fig. 4.5. Comparison of the effective refractive index vs refraction angle in the S-EH media (RED: no slant, BLACK: slant = 20°)

Fig. 4.6. Geometry of the dipole antenna loaded with slanted single-EH media, (lm = 6.6mm, tb = 3.9mm, a = 20) and point ‘p’ is the phase center of the antenna.

Fig. 4.7. Magnitude of in-plane electric field components along the radial direction from the phase center with φ = 45° and θ = 90° along with the pointing vector in XY-plane.

Fig. 4.8. Normalized radiation pattern of the antenna with single-EH media along with the 3D radiation pattern at 28 GHz for different slab thickness (tb).

Fig. 4.9. (a) Simulation setup for effective permittivity of the 8-dielectric slabs, PEC along x-direction for ϵx (for ϵy, PEC along y-direction) and PMC along z-direction (b) extracted permittivity along x- and y-direction.

Fig. 4.10. (a) Modified ELC-unit cell and (b) extracted permittivity of the proposed ELC unit cell for electric polarization along x- (Re(ϵx)) and y-directions (Re(ϵy)) along with effective refractive index (nx) in x-direction. (Dimensions in millimeters)

Fig. 4.11. Geometry of the proposed SIW dipole antenna loaded with 7-metamaterial ELC-slabs.

Fig. 4.12. Measured and simulated reflection coefficient of SIW dipole antenna.

Fig. 4.13. E-Plane radiation pattern of SIW dipole antenna loaded with ELC slabs at 28 GHz.

Fig. 4.14. Poynting vector and electric field in XY plane at ωt = π/4.

Fig. 4.15. 3D radiation pattern at 26, 28 and 29 GHz with 7-ELC slabs loaded to the SIW dipole antenna.

Fig. 4.16. (a) Photograph of SIW dipole antenna with seven ELC slabs (b) simulated and measured reflection coefficient of the SIW dipole antenna loaded with seven ELC-slabs.

Fig. 4.17. Measured and simulated radiation pattern (E-plane) of the SIW dipole antenna with 7-ELC metamaterial slabs at 27, 28, 29 and 30 GHz. (solid: simulated; dashed: measured).

Fig. 4.18. Measured and simulated radiation pattern (E-plane) of the SIW dipole antenna with 8-ELC metamaterial slabs at 27, 28, 28.5 and 29 GHz. (solid: simulated; dashed: measured).
Fig. 4. 19. Measured and simulated gain of the antenna with seven ELC slabs loaded to SIW dipole antenna.

Fig. 5. 1. Proposed all dielectric stacked superstrate for phase correction using eight dielectric slabs.

Fig. 5. 2. (a) Simulation setup and (b) the extracted effective permittivity of the 8-stacked dielectric slabs with 7-air gaps.

Fig. 5. 3. (a) Configuration of MPA with 8-stacked dielectrics (b) phase of y-component of electric field along x-axis for z=0.75mm (exit boundary).

Fig. 5. 4. Phase of y-component of electric field at $\omega t = \pi/2$ in xy-plane and xz-plane for MPA only and MPA with superstrate.

Fig. 5. 5. Top and side view of the fabricated MPA with stacked superstrate.

Fig. 5. 6. Simulated and measured input reflection coefficient of the proposed antenna.

Fig. 5. 7. Measured and simulated H-plane and E-plane radiation pattern of the antenna with stacked superstrate at 28-GHz (solid: Simulated, dashed: Measured).

Fig. 5. 8. Measured and simulated gain comparison of the proposed antenna with stacked superstrate vs MPA without stacking.

Fig. 5. 9. (a) Normalized k-vector vs angle from the z-axis for TM waves in yz-plane (b) the iso-frequency contour for TM waves in yz-plane (green curve), TE waves in xz-plane (red curve) and for free space in xz-plane (dotted blue).

Fig. 5. 10. Power distribution through the anisotropic slab when excited with a plane wave for different permittivity values for cut plane, $z = 5.8\text{mm}$ along y-axis.

Fig. 5. 11. Power flow distribution through the HLE slab when excited with a y-polarized plane wave.

Fig. 5. 12. Horn antenna loaded with HLE slab.

Fig. 5. 13. Snapshot of the transverse electric and transverse magnetic fields.

Fig. 5. 14. Variation of gain vs epsilon values along x- and y-direction.

Fig. 5. 15. Gain comparison of the horn antenna with HLE slab depicting the wide band gain enhancement.

Fig. 5. 16. Configuration of the microstrip patch antenna loaded with HLE slab and Input reflection coefficient of the MPA with and without HLE slab loading.
Fig. 5. 17. Phase variation of transverse E- and H-field components along y- and x-axis in HLE slab (a) phase of \mathbf{H}_x along y-axis for different ε_y (b) phase of \mathbf{E}_y along x-axis for different ε_x.

Fig. 5. 18. E-plane gain pattern of the antenna with HLE slab at 28 GHz for different slab thickness (t_m) along with.

Fig. 5. 19. 3D radiation pattern of the (a) MPA and (b) MPA with HLE slab at 28 GHz.

Fig. 5. 20. (a) Anisotropic ELC metamaterial unit cell simulation setup (b) MTM realized HLE slab using stacked seven MTM layers and (c) extracted permittivity of the unit cell for electric polarization along x- ($\text{Re} (\varepsilon_x)$) and y-directions ($\text{Re} (\varepsilon_y)$) and 7-ELC cell array.

Fig. 5. 21. Schematic of the microstrip patch antenna loaded with MTM lens realized using stacked layers.

Fig. 5. 22. Input reflection coefficient ($|S_{11}|$) of the patch antenna loaded with MTM lens and with HLE slab.

Fig. 5. 23. E-plane radiation pattern of patch antenna with varying number of MTM layers loading.

Fig. 5. 24. Power flow distribution for MPA with HLE slab and MTM lens in xz-plane.

Fig. 5. 25. 3D radiation pattern of the patch antenna with MTM lens loading at 28.3 GHz.

Fig. 5. 26. Photograph of the MPA with HLE lens realized using MTM layers.

Fig. 5. 27. Measured and simulated input reflection coefficient of the patch antenna with the MTM lens loading.

Fig. 5. 28. Measured and simulated radiation pattern (a) H-plane co- and cross-pol patterns (b) E-plane co-pol and cross-pol patterns of the patch antenna with MTM lens at 28 GHz.

Fig. 5. 29. Measured and simulated realized gain comparison of the MPA with and without MTM lens.

Fig. 5. 30. SIW fed ACPA (a) photograph of the ACPA with MTM lens and (b) measured and simulated S_{11} of the fabricated antenna.

Fig. 5. 31. Measured and simulated radiation pattern of the SIW fed ACPA with MTM lens (a) H-plane and (b) E-plane at 28 GHz.

Fig. 5. 32. Measured and simulated realized gain of the SIW fed ACPA with MTM lens for the frequency band.

Fig. 5. 33. Configuration of the planar lens with antenna array.
Fig. 5. 34. Geometry of the double layered MS unit cell. 118
Fig. 5. 35. Performance of the MS unit cell for plane wave excitation (a) transmission magnitude vs gap \(g \) (b) transmission phase vs gap \(g \) and (c) phase change vs the gap \(g \) at 28 GHz. 119
Fig. 5. 36. S-parameters of the double layer MS unit cell for different incident angles with gap \(g = 0.6 \text{mm} \) and having identical TE/TM polarization response. 120
Fig. 5. 37. Thin planar lens study (a) lens top view and simulation setup and (b) power distribution at focal plane \(z = 12 \text{mm} \) along x-direction vs incident angles. 121
Fig. 5. 38. Configuration of the proximity fed aperture coupled antenna array. 123
Fig. 5. 39. (a) Photograph of the three-antenna array and (b) measured and simulated s-parameters of the antenna. 123
Fig. 5. 40. (a) Radiation pattern of the antenna-2 at 29.5 GHz and (b) gain and axial ratio of the antenna-2 vs frequency. 124
Fig. 5. 41. 3D radiation pattern of the antenna-2 with the thin planar lens at 29 GHz. 124
Fig. 5. 42. Antenna array with lens (a) photograph of the prototype antenna (b) S-parameters of the antenna. 125
Fig. 5. 43. Radiation performance of the antenna array with lens (a-c) port 1 to 3 and (d) co- and cross-polarized radiation pattern at 30 GHz. 126
Fig. 5. 44. Measured and simulated realized gain of the antenna-2 with planar lens. 127
LIST OF TABLES

Table 1.1 Antennas for mmWave Applications---11
Table 2. 1 The Effect of Tilting Antenna-A1 ---32
Table 2. 2 The Effect of Metamaterial Loading ---33
Table 2. 3 Comparison of the Work with Reported Literature -----------------------------42
Table 3. 1 Comparison of the proposed work with other works----------------------------55
Table 4. 1 Comparison of proposed technique of dual-beam generation with existing techniques ---87
Table 5. 1 Comparison of proposed work with some of the published literature ----------116