A DIRECT SEARCH MATHEMATICAL PROGRAMMING ALGORITHM

BY

JACOB YAGHOUB MORADI

DATE DUE

A THESIS

PRESENTED IN PARTIAL FULFILLMENT OF

THE REQUIREMENTS FOR THE DEGREE

OF

MASTER OF SCIENCE IN MECHANICAL ENGINEERING

AT

NEWARK COLLEGE OF ENGINEERING

This thesis is to be used only with due regard to the rights of the author(s). Bibliographical references may be noted, but passages must not be copied without permission of the College and without credit being given in subsequent written or published work.

Newark, New Jersey
1974
ABSTRACT

An improved direct search algorithm for the solution of nonlinear optimization problems is presented in this thesis. A pattern search employing the fast rotating coordinate method of Pappas is coupled with the reliable, direction finding procedure of the feasible direction method of Zoutendijk to obtain a combined algorithm that is both fast and reliable.

The new combined Direct-Feasible Directions Algorithm is applied to the optimal design of a power plant. The design study utilizes a relatively large number of synthesis runs in order to test reliability. This problem was previously treated by Pappas using his nonlinear programming algorithm, which a recent comparison study shows is among the best of those available, particularly with respect to reliability. The Direct Feasible Directions Algorithm was found to locate the optimum with complete reliability in this problem. The method of Pappas, on the other hand, was unreliable (19% failure rate) for certain values of the parameters studied. Thus, the expected improvement in reliability resulting by combining the procedures of Pappas and Zoutendijk is confirmed.
APPROVAL OF THESIS
A DIRECT SEARCH MATHEMATICAL PROGRAMMING ALGORITHM
BY
JACOB YAGHOUB MORADI
FOR
DEPARTMENT OF MECHANICAL ENGINEERING
NEWARK COLLEGE OF ENGINEERING
BY
FACULTY COMMITTEE

APPROVED: Michael Popa
 Harry Schmuck
 Robert Moch

NEWARK, NEW JERSEY
JUNE, 1974
ACKNOWLEDGEMENTS

The author wishes to express his appreciation to his advisor, Michael Pappas for his help and guidance in the preparation of his thesis. Also he is grateful to Dr. Harry Herman for his guidance. In addition, the author expresses his gratitude to XON Corporation for their support during his graduate studies.

TABLE OF CONTENTS

1. Introduction
 - 1.1 Optimization
 - 1.2 Optimization and Design
 - 1.2.1 Mathematical Programming
 - 1.2.2 Design Example
 - 1.2.3 General Strategy of Mathematical Programming
 page 1.

2. Motivation
 page 10.

3. Direct Search-Feasible Direction (DFD) Algorithm
 - 3.1 General Strategy
 - 3.1.1 Method of Rotating Coordinates (RC) Pattern Search
 - 3.1.2 Pattern Search Failure
 - 3.2 Direction Finding Problem
 - 3.2.1 Motivation
 - 3.2.2 Definitions
 - 3.2.3 Formulation of the Direction Finding Problem
 - 3.3 The Optimization Procedure
 page 12.

4. Design Application
 - 4.1 Discussion and Results
 page 22.

5. Conclusion
 page 25.

6. Appendix
 page 27.

7. References
 page 42.