STRENGTH PREDICTION OF ANISOTROPIC ROCKS

By

JAGDEEP SINGH

A thesis submitted
in fulfilment of the requirements for the degree of

DOCTOR OF PHILOSOPHY

Department of Civil Engineering
INDIAN INSTITUTE OF TECHNOLOGY, DELHI
FEBRUARY 1988
CERTIFICATE

This is to certify that the thesis entitled, "STRENGTH PREDICTION OF ANISOTROPIC ROCKS" being submitted by Mr. Jagdeep Singh to the Indian Institute of Technology, Delhi, for the award of the degree of DOCTOR OF PHILOSOPHY is a record of the bonafide research work carried out by him. Mr. Jagdeep Singh has worked under our guidance for the submission of this thesis which to our knowledge has reached the requisite standard.

The thesis or any part thereof has not been submitted to any other University or Institution for the award of any degree or diploma.

Dr. G. VENKATAPPA RAO
Professor

Dr. T. RAMAMURTHY
Professor

Department of Civil Engineering
Indian Institute of Technology
New Delhi-110016
ACKNOWLEDGEMENT

I express my deep sense of gratitude to my supervisors, Prof. T. Ramamurthy and Prof. G. Venkatappa Rao, for their valuable guidance, constant encouragement and inspiration throughout this research work. I am thankful for their co-operation and kind help they rendered from time to time.

Thanks are due to the staff of National Hydro-electric Power Corporation at New Delhi and Banikhet (H.P.) for providing practical help in the collection of rock samples from Chourah Dam site.

I am grateful to Dr. V. M. Sharma, Joint Director, Central Soil and Materials Research Station, New Delhi for providing facilities for the preparation of specimens for laboratory testing.

I take this opportunity to thank my friends and fellow workers especially Dr. K.S. Rao, Mr. A. Hadi, Dr. V.K. Arora, Mr. N.K. Sharma and Mr. Noel for their help and suggestions at various stages of this work. Many happy moments and lively discussions have been shared with them.

The assistance rendered by the staff of Rock Mechanics Laboratory, especially Mr. K. Bhaskaran, and the Civil Engineering Workshop is thankfully acknowledged.

I am deeply indebted to my family members, especially to my sister Mrs. Baljeet Kaur, whose inspiration and encouragement has sustained me beyond measure.

Without the blessings of my father and mother this work would not have been materialized.

JAGDEEP SINGH
ABSTRACT

The nature and physico-mechanical response of intrinsically anisotropic rocks is still not properly understood in spite of many attempts made in this direction in the past. Apart from various assumptions and limitations, the failure theories for anisotropic rocks have a common requirement, i.e., a necessity to conduct a number of triaxial tests at the minimum of three orientations to generate minimum pre-evaluation experimental data. On the other hand, a non-linear Mohr-Coulomb criterion for intact rocks, proposed by Ramamurthy and co-workers recently, has shown better results as compared to a number of other available failure theories but, still a scope of improving its precision exists. Keeping the above observations in view, the present investigation is an attempt to:

(i) reveal the nature and engineering behaviour of the three varieties of intrinsically anisotropic phyllite rocks, obtained from a project site in the Himalayan region;

(ii) introduce suitable modifications to Ramamurthy and co-worker's criterion for its better precision; and

(iii) propose a strength criterion for anisotropic intact rocks, having a wider utility and simplicity in its form.

The petrofabric analysis of the three phyllites (i.e., Quartzitic phyllite, Carbonaceous phyllite and Micaceous phyllite) was performed using thin-sections, X-ray diffraction and scanning electron microscope studies. The test procedures suggested by ISRM and Indian
Standards (IS) were followed in estimating the physical and strength properties. The use of cubical specimens for uniaxial compression and triaxial-tests, and square plates for tensile-tests was adopted in order to avoid the core drilling problems arising out of the highly fissile nature of the rocks.

A complete analytical approach towards anisotropic strength behaviour of the phyllites was made possible by varying the orientation (β) of the foliation planes with respect to the direction of major principal stress, at an interval of 15°, i.e., 0, 15, 30, 45, 60, 75 and 90°, in various tests to determine the geotechnical parameters. In triaxial testing, the range of confining pressure (σ_3) was distributed in five intervals i.e., 5, 15, 30, 50, and 70 MPa.

All the anisotropic phyllites have shown maximum compressive strength at $\beta=90^\circ$ and the minimum between $\beta=30$ and 40°, exhibiting "U-shaped" anisotropy curves similar to that of other metamorphic slates. It has been observed for other sedimentary rocks (e.g., shales and sandstones) that they exhibit "shoulder" type anisotropy. Rocks containing more than one set of weak planes (e.g., coal and large specimens made of individual blocks) are prone to have "wavy" or "undulatory" type of anisotropy curves.

The non-linear form of the Mohr-Coulomb criterion proposed by Ramamurthy and co-workers has been analysed through various approaches and suitable modifications have been introduced in order to expand the scope of its applicability to a much wider range of the confining pressures.
Keeping in view, a common limitation posed by various existing failure theories for anisotropic rocks i.e., obtaining a large amount of essential pre-evaluation experimental data, an empirical strength criterion for anisotropic rocks has been proposed having a wider practical utility. The criterion states that:

\[
\frac{\sigma_1 - \sigma_3}{\sigma_3} = B_j \left(\frac{\sigma_c}{\sigma_3} \right)^{\alpha_j}
\]

In this criterion, the uniaxial compressive strength at various orientations, \(\sigma_{c,j}\), is a scaling parameter for the non-dimensional parameters \(\alpha_j\) and \(B_j\) and the suggested inter-relationships are:

\[
\frac{\alpha_j}{\alpha_{90}} = \left(\frac{\sigma_{c,j}}{\sigma_{c,90}} \right)^{1-\alpha_{90}}
\]

and

\[
\frac{B_j}{B_{90}} = \left(\frac{\alpha_{90}}{\alpha_j} \right)^{0.5}
\]

The use of these key equations enables one to determine the values of \(\alpha_j\) and \(B_j\) at various orientations through the values of \(\alpha_{90}\), \(B_{90}\) and \(\sigma_{c,90}\), which are the corresponding values of \(\alpha_j\), \(B_j\) and \(\sigma_{c,j}\) at the standard orientation of \(\beta=90^\circ\). This has resulted in the elimination of triaxial test data at different \(\beta\) (except at \(\beta=90^\circ\)), which is otherwise essential in the evaluation of already existing criteria.
CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acknowledgement</td>
<td>1</td>
</tr>
<tr>
<td>Abstract</td>
<td>1</td>
</tr>
<tr>
<td>Contents</td>
<td>iv</td>
</tr>
<tr>
<td>List of Tables</td>
<td>ix</td>
</tr>
<tr>
<td>List of Figures</td>
<td>x</td>
</tr>
<tr>
<td>List of Notations</td>
<td>xvii</td>
</tr>
</tbody>
</table>

CHAPTER 1 INTRODUCTION

1.1 Organization of the Thesis

CHAPTER 2 LITERATURE REVIEW

2.1 Factors Affecting Strength of Rocks

2.1.1 Geological factors

2.1.2 Lithological factors

2.1.2.1 Texture

2.1.2.2 Mineral composition

2.1.3 Physical properties

2.1.4 Mechanical factors

2.1.4.1 Effects on uniaxial compressive strength

2.1.4.2 Effects on elastic parameters in uniaxial compression test

2.1.4.3 Effects on triaxial strength

2.1.4.4 Effects on elastic parameters in triaxial tests

2.1.4.5 Factors affecting strength in different test modes
2.2 Tensile Strength

2.3 Triaxial Shear Strength

2.4 Triaxial Shear Strength of Anisotropic Rocks
 2.4.1 Types of anisotropy

2.5 Strength Criteria for Isotropic Rocks

2.6 Strength Criteria for Anisotropic Rocks
 2.6.1 Single plane of weakness theory
 2.6.2 Variable co-efficient of friction and cohesive strength theory
 2.6.3 Walsh-Brace theory
 2.6.4 Modified variable cohesive strength theory
 2.6.5 Hoek and Brown theory
 2.6.6 Non-linear Mohr-Coulomb criterion for anisotropic rocks

2.7 Conclusions

CHAPTER 3 EXPERIMENTAL INVESTIGATIONS

3.1 Geology of the Site

3.2 Test Procedure

3.3 Petrography and Petrofabric Analysis

3.4 Physical Properties
 3.4.1 Density, porosity and water absorption
 3.4.2 Sonic wave velocity
 3.4.3 Durability

3.5 Specimen Preparation
 3.5.1 Uniaxial compression test and triaxial test
 3.5.2 Indirect tensile strength test

3.6 Geotechnical Behaviour
3.6.1 Uniaxial compressive strength 84
3.6.2 Indirect tensile strength 86
3.6.3 Triaxial shear strength 86
3.6.3.1 High pressure triaxial cell 88
3.6.3.2 System for maintaining and controlling cell pressure 92
3.6.3.3 Loading and load monitoring system 97
3.6.3.4 Deformation monitoring system 98

CHAPTER 4 STRENGTH CHARACTERISTICS 99

4.1 Choice of the Representative Strength Value of Anisotropic Rocks 99
4.1.1 Representative strength in compression 100
4.1.2 Representative strength in tension 102

4.2 Uniaxial Compressive Strength Behaviour of Phyllites 102
4.2.1 Compressive strength anisotropy 104

4.3 Tensile Strength Behaviour of Phyllites 104
4.3.1 Tensile strength anisotropy 105

4.4 Failure Strength under Confining Pressure 107
4.4.1 Effect of the confining pressure on anisotropy 113

4.5 Shear Strength Behaviour 113

4.6 Modes of Failure in Phyllites 128
4.6.1 Unconfined condition 128
4.6.2 Low confining pressure conditions 128
4.6.3 High confining pressure conditions 132
4.6.4 General trend of the failure pattern 132
4.6.5 Failure pattern in Micaceous phyllite 134
6.4.1.1 Quartzitic phyllite 208
6.4.1.2 Carbonaceous phyllite 208
6.4.1.3 Micaceous phyllite 211
6.4.2 Jaeger's criterion 211
6.4.2.1 Parameters corresponding to $\sigma_3 = 0$ MPa 213
6.4.2.2 Parameters corresponding to $\sigma_3 = 70$ MPa 213
6.5 Prediction of Strength for other Anisotropic Rocks 220
6.6 Conclusions 250

CHAPTER 7 SUMMARY AND CONCLUSIONS 252
7.1 Nature and Strength Characteristics of the Phyllites 252
7.1.1 Petrography and petrofabric analysis 252
7.1.2 Representative strength index values 253
7.1.3 Strength anisotropy 254
7.1.4 Strength behaviour under confining pressure 254
7.2 Proposed Modification to the Non-linear Mohr-Coulomb criterion 255
7.2.1 Strength prediction in brittle range 256
7.2.2 Brittle-ductile transition 256
7.2.3 Strength prediction in ductile range 257
7.3 Strength Criterion for Anisotropic Rocks 257
7.4 Suggestions for Future Work 261

REFERENCES 262

APPENDIX A TENSILE STRENGTH OF PHYLLITES 272