DESIGN, SYNTHESIS AND VESICULAR SELF-ASSEMBLY OF CYCLIC, ACYCLIC AND LIPID BASED MOLECULES

APPA RAO SAPALA

DEPARTMENT OF CHEMISTRY
INDIAN INSTITUTE OF TECHNOLOGY DELHI
APRIL 2017
DESIGN, SYNTHESIS AND VESICULAR SELF-ASSEMBLY OF CYCLIC, ACYCLIC AND LIPID BASED MOLECULES

by

APPA RAO SAPALA
Department of Chemistry

Submitted
In fulfillment of requirement of degree of Doctor of Philosophy
to the

Indian Institute of Technology Delhi

APRIL 2017
Dedicated to my beloved

‘PARENTS’ AND ‘RAO BROTHERS’
CERTIFICATE

This is to certify that the thesis entitled, "Design, synthesis and vesicular self-assembly of cyclic, acyclic and lipid based molecules", being submitted by Mr. Appa Rao Sapala, to the Indian Institute of Technology Delhi, for the award of degree of 'Doctor of philosophy in Chemistry', is a record of bonafide research work carried out by him. Mr. Appa Rao Sapala has worked under my guidance and supervision and has fulfilled all the requirements for the submission of this thesis, which to my knowledge has reached the requisite standard. The results embodied in this thesis have not been submitted in part or in full, to any other University or Institute for award of any degree or diploma.

Dr. V. Haridas
Thesis Supervisor
Professor
Department of Chemistry

IIT Delhi
Indian Institute of Technology Delhi
Hauz Khas, New Delhi-110016, India.
ACKNOWLEDGEMENTS

It’s my great pleasure to pay my deepest gratitude and respect to my supervisor, Dr. V. Haridas, Professor, Department of Chemistry, I.I.T. Delhi, who has been of constant support to me throughout my research work. It was a great opportunity to work under his supervision. His unwavering enthusiasm for chemistry kept me constantly engaged with my research, and his personal generosity helped make my time at IIT Delhi enjoyable. I did have the opportunity to imbibe a lot of his inspiring support, constant encouragement, sincere guidance and valuable suggestions during all of our research and non-research discussions.

I extend my sincere thanks to the Head of the Department of Chemistry, Prof. A. Ramanan and Prof. Ravi Shankar for providing all the necessary facilities for streamlining our research. I was privileged to have such an eclectic assembly of SRC, Profs. Nalin Pant, A.K. Singh and Veena Koul. I extend my sincere thanks to Prof. N. D. Kurur for his help and valuable suggestions. I am indebted to all of them for their encouragement and perspicacious analyses of my results.

I would like to thank my lab mates Dr. Sarala Naik, Dr. Yogesh Sharma, Dr. Srikanta Sahu, Dr. Ram Prakash, Bijesh, Sandhya, Gopal, Praveen, Ishanki, Sakshi, Dheepthi, Ajeet, Rohit, Tanmay, Vipin, Sameer, Govind and Akhilesh for their support. I also would like to acknowledge all the non-teaching staffs for their patience and grit for achieving the essential part of research, the data. I thank Mr. Keshav, Mr. Munna Lal, Mr. J. P. Sharma, Mrs. Shanta, Mr. Bhupendar, Mr. Gopal, Mr. Kuldeep and Mr. Sharma for their support for data acquirement. It is the pioneering efforts of NRF, which availed the state-of-the-art analysis of the nano structures, especially AFM and HRTEM.
I offer my gratitude towards my beloved parents (Mr. Sanyasi Rao Sapala and Challayamma). I thank my ever loving and caring Rao brothers (Nageswara Rao, Ganeswara Rao and Srinivasa Rao) for their unconditional love, support and encouragement to pursue my interests, even when the situations went beyond boundaries of language. I offer special thanks to my caring brother Srinivasa Rao, who always motivated me to achieve my goals. I offer my gratitude towards my mother’s lovable and my dearest sister Krishna veni and my brother-in law Naga raju for their suggestions and support. I thank to loving sister-in-laws Narasayamma, Krishna Tulasi, Suma Latha and Naga Lakshmi sister. I offer my special thanks to my wife Chaitanya Vijaya Lakshmi for unconditional love and her parents for their care and support. I would like to thank my dearest friends Prasad Nakapalli, Gopal Krishna, Chanchayya Gupta, Chitti Babu, N Raju, Murali and Venu. I offer my special thanks to Mathore Kishore and my dearest sister Santhosi Anusha for their love and continuous support. I thank my beloved teacher Chalapati Rao, who inspired me to pursue chemistry. I thank M/s GVK BIO and Dr. Sharief’s group for their support. I also thank to M/s AMRI Company for their support.

I gratefully acknowledge the financial support from Council of Scientific and Industrial Research (CSIR), India in the form of research fellowship. Finally, I would like to express my gratitude towards almighty for giving me the strength, courage and perseverance.

Appa Rao Sapala
ABSTRACT

The thesis entitled "Design, synthesis and vesicular self-assembly of cyclic, acyclic and lipid based molecules" deals with the design, synthesis and mechanistic insight from the self-assembling study of triazole-based cyclic, acyclic and lipidated molecules. We have demonstrated a new hypothesis regarding the mechanism of vesicle formation from non-amphiphilic molecules, which provides much needed insight into the long standing debate on the vesicular mechanism. The research work presented in this thesis is divided into five chapters.

Chapter I

Chapter I comprises of the recent advancements in supramolecular chemistry of morphogenesis of vesicles. The focus has been majorly on the design principles and vesicular self-assembly of molecules belonging to a variety of classes ranging from polymers, amphiphilic molecules, peptide molecules, to recently emerged non-peptidic molecules. A special attention was devoted to explaining their self-assembling properties emphasizing molecular structure.

Chapter II

Chapter II embodies the design, synthesis and self-assembly of a new class of triazolophanes with a hierarchical mechanism of self-assembly. The concentration dependent self-assembly from hemi-toroid to vesicle through the intermediacy of a toroid was demonstrated using ultramicroscopic and crystallographic investigations.
Chapter III
Chapter III comprises of a rational-design strategy for the synthesis of triazole based large ring cyclic and acyclic molecules with amide bonds to unravel the vesicular self-assembly mechanism. The effect of architecture of molecules and chemical moieties, which are responsible for the formation of vesicles, has been studied.

Chapter IV
Chapter IV deals with the investigation of the self-assembly of hybrid peptide molecules with varying curvatures. The concentration dependent formation of toroids and vesicles was demonstrated with simple acyclic molecules. The morphological transformations in solution, has been studied using fluorescence spectroscopy and a variety of microscopic methods.

Chapter V
Chapter V describes the design principles and synthesis of a series of triazole-based acyclic molecules and amino acid-based lipidated molecules to understand the structure-assembly relationship. The formation of self-assembled structures such as fibers, dendritic structures, flower like morphology and vesicles were investigated in this chapter.
सारांश

धीरेश "साइकल, एसाइकल और लिपिड आधारित अणुओं के डिजाइन, संगठन और वेस्टर्ल वर्त-असेबली" शीर्षक, त्रिया-आधारित चक्रीय, एनासिक और लिपिडेटेड अणुओं के सं-संयोजन अध्ययन से डिजाइन, संगठन और यंत्रवत अंतर्दृष्टि से संबंधित है। हमने गैर-एम्फिकलिक अणुओं से पुटिका गठन के तंत्र के बारे में एक नई परिक्षण का प्रदर्शन किया है, जो वेस्टर्ल तंत्र पर लंबे समय तक बहस में बहुत आवश्यक जानकारी प्रदान करता है।

इस धीरेश में प्रस्तुत अनुसंधान कार्य को पांच अध्यायों में विभाजित किया गया है।

अध्याय I

अध्याय I में वेस्कलस के मॉर्फोजेंसिस के सुपरमोलेक्युलर रसायन विज्ञान में हाल ही में प्रगति शामिल है। पोलिमर, एम्फिलिक अणुओं, पेप्टाइड अणुओं से हाल ही में गैर-पेप्टाइडिक अणुओं के उभरने वाले पिक्चर को सजाने और वेस्टर्ल वर्त-असेबली पर ध्यान केंद्रित किया गया है। आकृति संचारना पर बल देने हुए अपने सं-संयोजन गुणों को दर्शाते हुए एक विशेष ध्यान केंद्रित किया गया था।

अध्याय II

अध्याय 2 स्वर-असेबली के एक पदानुक्रमित तंत्र के साथ त्रिजोलोफेन के एक नए वर्ग के डिजाइन, संगठन और स्वर-असेबली का प्रतीक है। इसमें टॉनराइड से बुरी से टॉरोइड की मध्यस्थता को माध्यम तथा कंसेप्टियन पर निर्भर स्वर-असेबली का प्रदर्शन अल्ट्रामेमोर्फीकोपिक और क्रिनिस्टलोफाइक जांच के माध्यम से किया गया।

अध्याय III

अध्याय III में वेस्टर्ल वर्त-असेबली तंत्र को सुलझाने के लिए एमेड स्टोन के साथ रुग्णता आधारित बड़े अंगूठी चक्रीय और एसाइकल अणुओं के संयोजन के लिए एक तर्कसंगत-डिजाइन रणनीति शामिल है। अणुओं और रासायनिक मोडेलिंग, जो वेस्कल्स के गठन के लिए जिम्मेदार है की वास्तवरूप का असर का अध्ययन किया गया है।

अध्याय IV

अध्याय IV भिन्न वृक्ष के साथ एक पेप्टाइड अणुओं की स्वर-स्वर-असेबली की जांच से संबंधित है। टोरोइडस और वेस्कल्स के कंसेप्टियन पर निर्भर निर्माण सरल एसाइकल अणुओं के साथ प्रदर्शित किया गया था। समाधान में रूपांतरिक भौतिक परिवर्तनों का अध्ययन, प्रतिरोधित स्पेक्ट्रोस्कोपी और सूक्ष्म तरीकों की विविधता का अध्ययन किया गया है।
अध्याय V

अध्याय V संरचना-असंरचनी संबंधों को समझने के लिए त्रिज्या-आधारित एसाइकल अणुओं और एमिनो एसिड-आधारित लिपिडित अणुओं की एक प्रकुप्तास के डिजाइन सिद्धांतों और संशोधन का वर्णन करता है। इस अध्याय में स्वयं-इकट्ठे संरचनाओं जैसे फाइबर,डेन्ट्रिटिक के समान संरचनाएं, आकारिकी और वेसिकल्स जैसी फूलों की जाँच की गई।
ENCLOSURES

CERTIFICATE ... i

ACKNOWLEDGEMENTS ... iii

ABSTRACT ... v

TABLE OF CONTENTS ... ix

LIST OF FIGURES .. xi

TABLE OF SCHEMES ... xxvii

LIST OF TABLES .. xxix

LIST OF ABBREVIATIONS .. xxxi

NOTES ... xxxiii
TABLE OF CONTENTS

CHAPTER 1

1.1 INTRODUCTION
1.2 SMALL AMPHIPHILES
1.3 CALIXARENES-BASED MOLECULES
1.4 CURCUBITURILS-BASED MOLECULES
1.5 CYCLODEXTRIN-BASED MOLECULES
1.6 FULLERENE-BASED MOLECULES
1.7 POLYMER-BASED MOLECULES
1.8 PEPTIDE-BASED MOLECULES
1.9 DENDRIMER-BASED MOLECULES
1.10 AROMATIC LIPID-BASED MOLECULES
1.11 CONCLUSIONS

CHAPTER 2

2.1 INTRODUCTION
2.2 DESIGN OF SELF-ASSEMBLING MOLECULES
2.3 RESULTS AND DISCUSSION
2.4 CONCLUSIONS
2.5 REFERENCES

CHAPTER 3

3.1 INTRODUCTION
LIST OF FIGURES

Figure 1.1: Different topologies of scaffolds with functional groups: (a) 1-D linear
arrangement (b) 2-D cyclic/macrocyclic (c) 3-D cavity containing scaffolds
(cyclodextrin/calixarenes) (d) polymers/peptides (e) dendrimers/liposomes... 4

Figure 1.2: Small unilamellar vesicles (SUVs), large unilamellar vesicles (LUVs), giant
unilamellar vesicles (GVUs) and multiunilamellar vesicles (MUVs). 5

Figure 1.3: Chemical structures of di-n-dodecyl dimethyl ammonium bromide A1.
Chemical structures of discoatic ortho-phenylene ethynylene macrocycle
A2 and oligomers A3-A4... 8

Figure 1.4: Chemical structures of rectangular amphiphile A5.................................. 9

Figure 1.5: Chemical structures of lectithin A6 and C4-lectithin A7......................... 10

Figure 1.6: Chemical structure aryl triazole amphiphiles A8.................................. 10

Figure 1.7: Chemical structures of oligomers A9-A10... 11

Figure 1.8: Chemical structures of calixarene based molecules A11-A12.................. 12

Figure 1.9: Chemical structures of calixarene derivatives A13-A15......................... 13

Figure 1.10: Chemical structures of calixarene derivatives A16-A18....................... 14

Figure 1.11: Chemical structures of calixarene derivatives A19-A21...................... 14

Figure 1.12: Chemical structures of calixarene derivatives A22............................ 15

Figure 1.13: Chemical structures of calixarene derivatives A23 and A24.................. 16

Figure 1.14: Chemical structures of curcubituril-derivatives A25-A27.................... 16

Figure 1.15: Chemical structures of curcubituril derivative A28 and
polyamines A29-A30... 17
Figure 1.16: Chemical structures of cyclodextrin derivatives A31-A32. 17

Figure 1.17: Chemical structures of cyclodextrin derivatives A33-A34. 18

Figure 1.18: Chemical structures of cyclodextrin, 1-naphthylammonium chloride and sodium bis(2-ethyl-1-hexyl)sulfosuccinate A35-A37. .. 18

Figure 1.19: Chemical structures of cyclodextrin A35, and aromatic guest molecules A39. .. 19

Figure 1.20: Vesicles formation by self-assembly of A40. ... 20

Figure 1.21: Chemical structures of penta-substituted fullerene potassium salt A41. 21

Figure 1.22: Chemical structures of dendritic methano[60]fullerene octadeca-acid A42. ... 21

Figure 1.23: Chemical structures of amphiphilic dendrofullerenes A43-A44. 22

Figure 1.24: Chemical structures of charge amphiphilic block copolypeptides A45-A46 and schematic diagram of proposed self-assembly of vesicles. 23

Figure 1.25: Chemical structures of amphiphilic rod–coil molecule A47 and schematic representation of self-assembly. ... 24

Figure 1.26: Chemical structures of amphiphilic block copolymer with peripheral azide moieties A48 and functionalized moiety A49. ... 25

Figure 1.27: Chemical structure of PB_{165-b}-PLL_{88} A50. ... 25

Figure 1.28: Chemical structures of triblock co-polymer A51 and PMOXA-PDMS-PMOXA amphiphilic triblock A52. ... 26

Figure 1.29: Chemical structures of amphiphilic co-polymer A53 and amphiphilic triblock copolymer A54. ... 27

Figure 1.30: Chemical structures of diketopiperazine based peptidic molecules A55-A62. 28
Figure 1.31: A model for alternative assembly of tubular and spherical peptide nanostructures ... 29

Figure 1.32: Molecular structure of a tripodal dipeptide derivative A66. 30

Figure 1.33: Chemical structures of peptide rod–coil building blocks A67-A70 30

Figure 1.34: Molecular structure of cationic dipeptide A71 ... 31

Figure 1.35: Chemical structures of pseudopeptidic molecules A72-A78 32

Figure 1.36: Chemical structures of dipeptidic molecules A79-A81 32

Figure 1.37: Chemical structures of peptide based linear and cyclic molecules A82-A83 . 33

Figure 1.38: Chemical structures of peptide molecules A84-A85 34

Figure 1.39: Chemical structure of dendrimer A86 .. 35

Figure 1.40: Chemical structure of janus-dendrimer A87-A95 ... 36

Figure 1.41: Chemical structure of dye molecule A96 .. 37

Figure 1.42: Chemical structures of oligo(p-phenyleneethynylene) molecules A97-A98 . 38

Figure 1.43: Chemical structures of lipidated aromatic derivatives A99-A101 38

Figure 1.44: Chemical structures of lipidated aromatic derivatives A102-A103 39

Figure 2.1: Design of cyclic molecule incorporating aromatic, triazole and amide groups .. 52

Figure 2.2: Structures of triazolophanes B6 and B7 ... 53

Figure 2.3: Cartoon representation of cyclization reaction .. 54

Figure 2.4: Ultramicroscopic analysis of the self-assembly of triazolophanes: (a) AFM image of B7 at 0.1 mM showing hemi-toroids. Inset shows a single magnified hemi-toroid (b) AFM image of B7 at 0.25 mM showing the toroids (c) AFM image of B7 at 1 mM showing the vesicles. .. 56
Figure 2.5: AFM images of (a) B6 at 0.25 mM showing hemi-toroids and toroids (b) B6 at 1 mM showing vesicles (c) Cross-section along the line in (b). 57

Figure 2.6: (a) AFM image of B7 at 0.25 mM showing hemi-toroids and toroids (b) Cartoon representation of toroid at 0.25 mM with dimensions estimated by AFM. (c) Cross section along the line in (a). (d) B7 at 1 mM showing vesicles. (e) Cross-section along the line in (d). .. 57

Figure 2.7: SEM images of (a) B6 at 0.1 mM showing mostly hemi-toroids and toroids (b) B6 at 0.25 mM showing mostly toroids (c) B6 at 1 mM showing vesicles. Histogram generated from various measurements (d) diameter of toroids of B6 and (e) diameter of vesicles of B6.. 58

Figure 2.8: SEM images of (a) B7 at 0.25 mM showing mostly toroids. FE-SEM images of (b) B7 at 0.5 mM showing toroids with decreasing internal cavity and vesicles (c) B7 at 0.5 mM showing toroids with decreased internal cavity and vesicles (d) B7 at 1 mM showing vesicles. Histogram generated from various measurements (e) diameter of toroids of B7 and (f) diameter of vesicles of B7. .. 59

Figure 2.9: (I) HR-TEM images of (a) B6 at 0.25 mM showing formation of toroids (b) B6 at 0.5 mM showing formation of toroids (c) B6 at 1 mM showing vesicles. TEM images of (d) B7 at 0.1 mM showing hemi-toroids and toroids (e) B7 at 0.25 mM showing hemi-toroids and mostly toroids (f) B7 at 1 mM showing vesicles. (II) Schematic representation showing the evolution of vesicles. The increase in concentration results in transformation of hemi-toroids (left) to vesicles (right).. 60
Figure 2.10: Cartoon representations of sizes of (a) toroids and (b) vesicles based on the dimensions estimated by SEM, TEM and AFM. .. 61

Figure 2.11: DLS (Size distribution by number) of B7 at different concentrations (0.25-0.5 mM) in 1:1 methanol:chloroform. ... 62

Figure 2.12: DLS (Size statistics report by intensity) of B7 at different concentrations (0.25-0.5 mM) in 1:1 methanol:chloroform. ... 63

Figure 2.13: Possible mechanism for vesicular assembly from molecular level.............. 64

Figure 2.14: FE-SEM images of (a) B13 at 0.1 mM showing hemi-toroids and toroids (b) B13 at 0.25 mM showing hemi-toroids and mostly toroids (c) B13 at 0.5 mM showing toroids with decreased internal cavity and vesicles (d) B13 at 1 mM showing vesicles. .. 65

Figure 2.15: AFM images of (a) B13 at 0.1 mM showing hemi-toroids (b) B13 at 0.25 mM showing toroids. Inset shows a single magnified toroid (scale bar: 100 nm). (c) B13 at 1 mM showing vesicles (d) Cross-section along the line in (c)............ 66

Figure 2.16: TEM images of (a) B13 at 0.25 mM showing formation of toroids. Inset shows a single magnified hemi-toroid (scale bar: 100 nm). (b) B13 at 0.5 mM showing toroids. Inset shows a single magnified toroid (c) B13 at 1 mM showing vesicles. HR-TEM images of (d-e) B13 at 1 mM showing vesicles. Cartoon representations of (f) toroids and (g) vesicles based on the dimensions estimated by SEM, TEM and AFM. .. 67

Figure 2.17: Shadow images of (a) soap bubble (b) sphere and (c) tennis ball.............. 68

Figure 2.18: DLS (Size distribution by number) of B13 at different concentrations (0.25-0.5 mM) in 1:1 methanol:chloroform. ... 68
Figure 2.19: DLS (Size statistics report by intensity) of \textbf{B13} at different concentrations (0.25-0.5 mM) in 1:1 methanol:chloroform. .. 69

Figure 2.20: FE-SEM images of \textbf{B7} before (a and c) and after FIB milling (b and d). The red circles indicate the portions where FIB milling was performed. 70

Figure 2.21: FE-SEM images of (a-d) \textbf{B6} after FIB milling (e-f) \textbf{B13} after FIB milling. The selected part of the vesicles was excised out by focused ion beam. 71

Figure 2.22: Crystal structure of \textbf{B7} with atom numbering. Two molecules are present in the unit cell. These molecules differ in the arrangement of triazole rings. In one, triazole units are in \textit{syn} and in the other triazole units are in the \textit{anti}-arrangement. .. 72

Figure 2.23: X-ray crystal structure of \textbf{B7}: (a) Snap shot and (b) Capped stick representation of \textit{syn} and \textit{anti} conformers. ... 74

Figure 2.24: X-ray crystal structure of \textbf{B7}: (a) Capped stick representation showing toroidal assembly in the unit cell through hydrogen bonding, viewed along the b-axis (b) Space filled diagram showing the toroidal assembly of \textbf{B7} along b-axis in the unit cell. .. 75

Figure 2.25: X-ray crystal structure of \textbf{B7}: (a) the hydrogen bonded tetrad arrangement with atom labels (b) Chemical structure representation of tetrad assembly. Blue colored structures represent \textit{syn} conformer and red colored structures represent \textit{anti} conformer. Dashed lines indicate hydrogen bonds between \textit{anti} and \textit{syn} conformers of \textbf{B7}... 76

Figure 2.26: (a) Stacking of \textit{syn} molecules of \textbf{B7} along \textit{a} axis (b) Stacking of \textit{syn} molecules of \textbf{B7} along \textit{c} axis.. 77
Figure 2.27: (a) Stacking of *anti* molecules of B7 along a axis (b) Stacking of *anti* molecules of B7 along c axis. ... 78

Figure 2.28: X-ray crystal structure of B7: (a) the hydrogen bonded arrangement between pair of stacks (b) the hydrogen bonded arrangement between multi stacks. 78

Figure 2.29: Crystal structure of B6. Methanol molecule is entrapped with B6. (a) Snap shot and (b) Capped stick representation of anti conformer and methanol molecule. ... 80

Figure 2.30: X-ray crystal structure of B6: (I) (a) Capped stick representation showing a cyclic framework in the unit cell viewed along the b-axis (b) Space filled diagram showing a cyclic framework of B6 along b-axis in the unit cell. (II) (a) Stacking of *anti* molecules of B6 ... 82

Figure 2.31: X-ray crystal structure of B6: (a) Stacking of *anti* molecules of B6 and methanol molecules along a axis with atom labels (b) Stacking of *anti* molecules of B6 and methanol molecules along b. ... 83

Figure 2.32: Packing diagram of B7 in the solid state. ... 84

Figure 2.33: (a) Schematic representation of the mechanism of self-assembly of B7 (b) Schematic representation showing the evolution of vesicles. (c) A toroid showing poloidal and toroidal components. ... 85

Figure 2.34: 1H NMR (300 MHz, CDCl$_3$) spectrum of B3 ... 93

Figure 2.35: 13C NMR (75 MHz, CDCl$_3$) spectrum of B3 ... 93

Figure 2.36: Mass spectrum of B3 ... 94

Figure 2.37: 1H NMR (300 MHz, CDCl$_3$) spectrum of B10 ... 94

Figure 2.38: 13C NMR (75 MHz, CDCl$_3$) spectrum of B10 ... 95
Figure 2.39: Mass spectrum of B10 ... 95
Figure 2.40: 1H NMR (300 MHz, CDCl$_3$) spectrum of B12 96
Figure 2.41: 13C NMR (75 MHz, CDCl$_3$) spectrum of B12 96
Figure 2.42: 1H NMR (300 MHz, DMSO-d_6) spectrum of B6 97
Figure 2.43: 13C NMR (75 MHz, DMSO-d_6) spectrum of B6 97
Figure 2.44: Mass spectrum of B6 ... 98
Figure 2.45: 1H NMR (300 MHz, DMSO-d_6) spectrum of B7 98
Figure 2.46: 13C NMR (75 MHz, DMSO-d_6) spectrum of B7 99
Figure 2.47: Mass spectrum of B7 ... 99
Figure 2.48: 1H NMR (300 MHz, CDCl$_3$) spectrum of B13 100
Figure 2.49: 13C NMR (75 MHz, CDCl$_3$) spectrum of B13 100
Figure 2.50: Mass spectrum of B13 ... 101
Figure 3.1: Systematic design of large ring cyclic molecules C16-C17 with same structural features as reported that of simple triazolophanes B6-B7 108
Figure 3.2: Disconnection of precursors C12/C14 ... 110
Figure 3.3: HR-TEM image of C16 (a) at 0.1 mM showing hemi-toroid (b) at 0.5 mM showing toroid (c) at 1 mM showing vesicles. SEM image of C16 (d) at 0.5 mM showing toroids and vesicles (e) at 1 mM showing toroids and vesicles. (f) AFM of C16 at 1 mM showing vesicles .. 114
Figure 3.4: Molecular dynamic simulation of macrocycles (a) C16 and (b) C17 115
Figure 3.5: Design of acyclic molecules with restricted and free rotation in its structure ... 116
Figure 3.6: X-ray crystal structure of \textbf{C20}: Capped stick representation of molecules of \textbf{C20}. ... 120

Figure 3.7: The packing diagram of \textbf{C20} viewed along the b-axis......................... 120

Figure 3.8: FE-SEM image of \textbf{C12} (a) at 0.5 mM showing toroids (Inset: magnified toroid) (b) at 1 mM showing vesicles. AFM of (c) \textbf{C12} at 0.5 mM showing toroids (d) at 1 mM showing the vesicles. ... 123

Figure 3.9: FE-SFM image of \textbf{C14} (a) at 0.5 mM showing toroids (b) at 1 mM showing vesicles. AFM of \textbf{C14} (c) at 0.5 mM showing toroids (d) at 1 mM showing the vesicles. ... 123

Figure 3.10: Molecular dynamic simulation of acyclic molecules \textbf{C12}, \textbf{C14}............... 124

Figure 3.11: (a-b) SEM image of \textbf{C20} at 0.5 mM and 1 mM (c-d) SEM image of \textbf{C6} at 0.5 mM and 1 mM (e-f) SEM image of \textbf{C8} at 0.5 mM and 1 mM. 125

Figure 3.12: (a-b) SEM image of \textbf{C25} at 0.5 mM and 1 mM (c-d) AFM image of \textbf{C25} at 0.5 mM and 1 mM showing toroids and vesicles................................. 126

Figure 3.13: (I) Chemical structures of \textbf{C20}, \textbf{C8}, \textbf{C14} and \textbf{C25}. (II) SEM image of (a) \textbf{C20} at 1 mM (b) \textbf{C8} at 1 mM (c) \textbf{C14} at 1 mM (d) \textbf{C25} at 1 mM. 128

Figure 3.14: 1H NMR (300 MHz, CDCl$_3$) spectrum of \textbf{C5a}................................. 145

Figure 3.15: 13C NMR (75 MHz, CDCl$_3$) spectrum of \textbf{C5a}......................... 145

Figure 3.16: Mass spectrum of \textbf{C5a}... 146

Figure 3.17: 1H NMR (300 MHz, CDCl$_3$) spectrum of \textbf{C5b}................................. 146

Figure 3.18: 13C NMR (75 MHz, CDCl$_3$) spectrum of \textbf{C5b}................................. 147

Figure 3.19: Mass spectrum of \textbf{C5b}.. 147

Figure 3.20: 1H NMR (300 MHz, CDCl$_3$) spectrum of \textbf{C6}................................. 148
Figure 3.21: 13C NMR (75 MHz, CDCl$_3$) spectrum of C6 ... 148
Figure 3.22: Mass spectrum of C6 .. 149
Figure 3.23: 1H NMR (300 MHz, D$_2$O) spectrum of C7 ... 149
Figure 3.24: 13C NMR (75 MHz, D$_2$O) spectrum of C7 ... 150
Figure 3.25: Mass spectrum of C7 .. 150
Figure 3.26: 1H NMR (300 MHz, CDCl$_3$) spectrum of C8 ... 151
Figure 3.27: 13C NMR (75 MHz, DMSO-d_6) spectrum of C8 151
Figure 3.28: Mass spectrum of C8 .. 152
Figure 3.29: 1H NMR (300 MHz, D$_2$O) spectrum of C9 ... 152
Figure 3.30: 13C NMR (75 MHz, D$_2$O) spectrum of C9 ... 153
Figure 3.31: Mass spectrum of C9 .. 153
Figure 3.32: 1H NMR (300 MHz, CDCl$_3$) spectrum of C10 ... 154
Figure 3.33: 13C NMR (75 MHz, CDCl$_3$) spectrum of C10 ... 154
Figure 3.34: Mass spectrum of C10 .. 155
Figure 3.35: 1H NMR (300 MHz, CDCl$_3$) spectrum of C11 ... 155
Figure 3.36: 13C NMR (75 MHz, CDCl$_3$) spectrum of C11 ... 156
Figure 3.37: 1H NMR (300 MHz, CDCl$_3$) spectrum of C12 ... 156
Figure 3.38: 13C NMR (75 MHz, CDCl$_3$) spectrum of C12 ... 157
Figure 3.39: Mass spectrum of C12 .. 157
Figure 3.40: 1H NMR (300 MHz, DMSO-d_6) spectrum of C13 158
Figure 3.41: 13C NMR (75 MHz, DMSO-d_6) spectrum of C13 159
Figure 3.42: Mass spectrum of C13 .. 159
Figure 3.43: 1H NMR (300 MHz, CDCl$_3$) spectrum of C14 ... 159

xx
Figure 3.44: 13C NMR (75 MHz, CDCl$_3$) spectrum of C14 .. 160
Figure 3.45: Mass spectrum of C14 ... 160
Figure 3.46: 1H NMR (300 MHz, DMSO-d_6) spectrum of C15 161
Figure 3.47: 13C NMR (75 MHz, DMSO-d_6) spectrum of C15 161
Figure 3.48: Mass spectrum of C15 ... 162
Figure 3.49: 1H NMR (300 MHz, DMSO-d_6) spectrum of C16 162
Figure 3.50: 13C NMR (75 MHz, DMSO-d_6) spectrum of C16 163
Figure 3.51: Mass spectrum of C16 ... 163
Figure 3.52: Mass spectrum of C17 ... 164
Figure 3.53: 1H NMR (300 MHz, DMSO-d_6) spectrum of C20 164
Figure 3.54: 13C NMR (75 MHz, DMSO-d_6) spectrum of C20 165
Figure 3.55: Mass spectrum of C20 ... 165
Figure 3.56: 1H NMR (300 MHz, DMSO-d_6) spectrum of C22 166
Figure 3.57: 13C NMR (75 MHz, DMSO-d_6) spectrum of C22 166
Figure 3.58: Mass spectrum of C22 ... 167
Figure 3.59: 1H NMR (300 MHz, DMSO-d_6) spectrum of C23 167
Figure 3.60: 13C NMR (75 MHz, DMSO-d_6) spectrum of C23 168
Figure 3.61: Mass spectrum of C23 ... 168
Figure 3.62: 1H NMR (300 MHz, DMSO-d_6) spectrum of C24 169
Figure 3.63: 13C NMR (75 MHz, DMSO-d_6) spectrum of C24 169
Figure 3.64: Mass spectrum of C24 ... 170
Figure 3.65: 1H NMR (300 MHz, CDCl$_3$) spectrum of C25 ... 170
Figure 3.66: 13C NMR (75 MHz, CDCl$_3$) spectrum of C25 ... 171
Figure 3.67: Mass spectrum of C25

Figure 4.1: Design of acyclic molecules with restricted rotation in its structure

Figure 4.2: Design of acyclic hybrid peptide molecules D1-D3

Figure 4.3: Structures of acyclic molecules B12 and D1-D3

Figure 4.4: SEM images of (a-b) D1 at 0.5 mM (Inset: showing single magnified hemi-toroid). (c) D1 at 1 mM (d-e) B12 at 0.5 mM. (f) B12 at 1 mM

Figure 4.5: Ultramicroscopic analysis of the self-assembly of acyclic molecules.

TEM images of (a) B12 at 0.5 mM showing toroids. Inset shows a single magnified toroid (scale bar: 100 nm) (b) B12 at 1 mM showing vesicles. Inset shows a single magnified vesicle. AFM images of (c) B12 at 0.5 mM showing hemi toroids and toroids. Inset shows a single magnified hemi-toroid (scale bar: 50 nm) (d) B12 at 1 mM showing vesicles

Figure 4.6: Ultramicroscopic analysis of the self-assembly of D2 (a) TEM images of D2 at 0.5-1 mM showing vesicles. (b) AFM images of D2 at 0.5-1 mM showing vesicles

Figure 4.7: SEM image of B12 at 0.5 mM and 1 mM in (a-b) THF: Tetrahydrofuran (c-d) Ethyl acetate: CH₃COOC₂H₅ (e) Actetoitrile: CH₃CN (1 mM) (f-g) Isopropanol: (CH₃)₂CHOH (h) Chloroform: CHCl₃ (1 mM)

Figure 4.8: (I) SEM images of D3 at (a) 0.25 mM (b) 1 mM in 1:1 methanol:chloroform. (II) Magnified SEM images of D1, D3 at 0.25 mM and 1 mM in 1:1 methanol:chloroform

Figure 4.9: A model for assembly of spherical structures (toroids and vesicles) of D1 in

1:1 methanol:chloroform
Figure 4.10: A model for assembly of tubular structures of D3 in 1:1 methanol:chloroform…………………………………………………………………………… 188

Figure 4.11: Confocal microscopy images using fluorescein as the fluorescent probe (a) Toroids formed at 0.25 mM B12 (b) A magnified image of a single toroid form circled in (a). (c) A cluster of vesicles formed from 1 mM B12 (d) A zoomed-into image of a single vesicle as indicated in white circle in (c). (e) Confocal microscopy images of B12 at 1 mM using Nile red as the fluorescent probe (f) A zoomed-in image of a single vesicle as indicated with a white circle in (e)………………………………………………………… 189

Figure 4.12: (a-b) Confocal fluorescence images of the vesicles formed from 1 mM B12 with the dye used here being R6G. ………………………………………………….. 190

Figure 4.13: Emission spectra of Nile red (NR) as a function of increasing concentration of B12. The concentration of NR was kept at 5 μM throughout. λ_{exc} = 500 nm………………………………………………………………… 191

Figure 4.14: Emission spectra of PRODAN as a function of the concentration of B12 as indicated in the figure legend. λ_{exc} = 340 nm…………………………………………… 191

Figure 4.15: Schematic representation of the mechanism describing self-assembly at different concentrations and showing their encapsulation studies in red color (toroid and vesicle) and effect of dilution on self-assembly. ……………………. 193

Figure 4.16: 1H NMR (300 MHz, CDCl$_3$) spectrum of D1…………………………………… 198

Figure 4.17: 13C NMR (75 MHz, CDCl$_3$) spectrum of D1…………………………………… 198

Figure 4.18: Mass spectrum of D1…………………………………………………………………… 199

Figure 4.19: 1H NMR (300 MHz, DMSO-d_6) spectrum of D2…………………………………… 199
Figure 4.20: 13C NMR (75 MHz, DMSO-d_6) spectrum of D2 .. 200

Figure 4.21: Mass spectrum of D2 .. 200

Figure 4.22: 1H NMR (300 MHz, CDCl3) spectrum of D3 ... 201

Figure 4.23: 13C NMR (75 MHz, CDCl3) spectrum of D3 ... 201

Figure 4.24: Mass spectrum of D3 .. 202

Figure 5.1: Design of lipidated molecules by replacing the alkyne functionality with long aliphatic chains .. 210

Figure 5.2: Design of lipidated molecules from triazolophane by changing the 1,3-dicarbonyl unit (indicated with red circle) and further functionalizing at the apex position. .. 211

Figure 5.3: Design of lipidated molecules by functionalizing with long chains at new position on benzene ring (as indicated with red circle). 212

Figure 5.4: Cartoon picture of lipidated molecules with (a) one arm E11-E14 and (b) two pendant arms E15-E17 .. 213

Figure 5.5: Chemical structures of acyclic triazole-based molecules E3 and E4......... 214

Figure 5.6: Structures of lipidated molecules with one pendant arm E11-E14 and two pendant arms E15-E17 .. 216

Figure 5.7: SEM images of E11-E12 in 1:1 methanol:chloroform (a-b) 0.5 and 1 mM of E11, (c-d) 0.5 and 1 mM of E12 .. 218

Figure 5.8: SEM images of E13-E14 in 1:1 methanol:chloroform (a-b) 0.5 and 1 mM of E13, (c-d) 0.5 and 1 mM of E14 .. 218

Figure 5.9: SEM image of (a) E15 at 0.5 mM (b) E15 at 1 mM (c-d) E20 at 1 mM in methanol:chloroform .. 220
Figure 5.10: Chemical structures and Self-assembly of D1, E15 and E20. 221

Figure 5.11: SEM image of E16 (a) at 0.5 mM (b) at 1 mM in methanol:chloroform........ 221

Figure 5.12: SEM of E17 (a) 1 mM (b) 10 mM (c) 20 mM (d) 55 mM (e) HR-TEM (f) AFM of E17 (1 mM) in 1:1 methanol:chloroform.. 222

Figure 5.13: Cartoon presentation of self-assembled structures from E11-E17 at different concentrations in methanol:chloroform. .. 224

Figure 5.14: \(^1\)H NMR (300 MHz, DMSO-d6) spectrum of E3 ... 239

Figure 5.15: \(^1\)H NMR (300 MHz, DMSO-d6) spectrum of E3 ... 239

Figure 5.16: Mass spectrum of E3.. 240

Figure 5.17: \(^1\)H NMR (300 MHz, DMSO-d6) spectrum of E4 ... 240

Figure 5.18: \(^1\)H NMR (300 MHz, DMSO-d6) spectrum of E4 ... 241

Figure 5.19: Mass spectrum of E4.. 241

Figure 5.20: \(^1\)H NMR (300 MHz, CDCl3) spectrum of E5 .. 242

Figure 5.21: \(^13\)C NMR (75 MHz, CDCl3) spectrum of E5 ... 242

Figure 5.22: Mass spectrum of E5.. 243

Figure 5.23: \(^1\)H NMR (300 MHz, CDCl3) spectrum of E6 .. 243

Figure 5.24: \(^13\)C NMR (75 MHz, CDCl3) spectrum of E6 ... 244

Figure 5.25: Mass spectrum of E6.. 244

Figure 5.26: \(^1\)H NMR (300 MHz, CDCl3) spectrum of E7 .. 245

Figure 5.27: \(^13\)C NMR (75 MHz, CDCl3) spectrum of E7 ... 245

Figure 5.28: Mass spectrum of E7.. 246

Figure 5.29: \(^1\)H NMR (300 MHz, CDCl3) spectrum of E11 ... 246

Figure 5.30: \(^13\)C NMR (75 MHz, CDCl3) spectrum of E11 ... 247
Figure 5.31: Mass spectrum of E11 ... 247
Figure 5.32: 1H NMR (300 MHz, CDCl$_3$) spectrum of E13 ... 248
Figure 5.33: 13C NMR (75 MHz, CDCl$_3$) spectrum of E13 ... 248
Figure 5.34: Mass spectrum of E13 ... 249
Figure 5.35: 1H NMR (300 MHz, CDCl$_3$) spectrum of E12 ... 249
Figure 5.36: 13C NMR (75 MHz, CDCl$_3$) spectrum of E12 ... 250
Figure 5.37: Mass spectrum of E12 ... 250
Figure 5.38: 1H NMR (300 MHz, CDCl$_3$) spectrum of E14 ... 251
Figure 5.39: 13C NMR (75 MHz, CDCl$_3$) spectrum of E14 ... 251
Figure 5.40: Mass spectrum of E14 ... 252
Figure 5.41: 1H NMR (300 MHz, CDCl$_3$) spectrum of E15 ... 252
Figure 5.42: 13C NMR (75 MHz, CDCl$_3$) spectrum of E15 ... 253
Figure 5.43: Mass spectrum of E15 ... 253
Figure 5.44: 1H NMR (300 MHz, CDCl$_3$) spectrum of E16 ... 254
Figure 5.45: 13C NMR (75 MHz, CDCl$_3$) spectrum of E16 ... 254
Figure 5.46: Mass spectrum of E16 ... 255
Figure 5.47: 1H NMR (300 MHz, DMSO-d_6) spectrum of E17 255
Figure 5.48: 1H NMR (300 MHz, DMSO-d_6) spectrum of E17 256
Figure 5.49: Mass spectrum of E17 ... 256
Figure 5.50: 1H NMR (300 MHz, CDCl$_3$) spectrum of E20 ... 257
Figure 5.51: 13C NMR (75 MHz, CDCl$_3$) spectrum of E20 ... 257
Figure 5.52: Mass spectrum of E20 ... 258
TABLE OF SCHEMES

Scheme 2.1: Scheme of synthesis of macrocycles B6 and B7 ... 54

Scheme 2.2: Synthesis of macrocycle B13 incorporating L-leucine amino acid. 64

Scheme 3.1: Attempted stepwise-route for the synthesis of expanded macrocycles. 109

Scheme 3.2: Synthesis of amines C7 and C9 ... 111

Scheme 3.3: Synthesis of precursors C12-C15 ... 112

Scheme 3.5: Synthesis of acyclic molecules C21, C23 and C24 .. 117

Scheme 3.6: Synthesis of acyclic molecules C25 ... 118

Scheme 4.1: (a) Synthesis of hybrid peptide molecules D1-D3 and B12 (b) Cartoon representation of hybrid peptide molecules D1-D3 and B12 .. 181

Scheme 5.1: Synthesis of triazole-based acyclic molecules E3 and E4. 214

Scheme 5.2: Synthesis of lipidated molecules E11-E17 .. 217

Scheme 5.3: Synthesis of lipidated molecule E20 ... 219
LIST OF TABLES

Table 2.1: The solubility table of B6-B7 in different solvents ... 55

Table 2.2: Crystal data and structure refinement for B7 ... 73

Table 2.3: Hydrogen bonds and weak intermolecular interactions for B7 79

Table 2.4: Crystal data and structure refinement for B6 ... 81

Table 2.5: Hydrogen bonds interactions for B6 ... 83

Table 3.2: Different conditions tried acid-amine for coupling reaction. 118

Table 3.3: Crystal data and structure refinement for C20 ... 121

Table 3.4: Hydrogen bonding intermolecular interactions for C20 .. 122
<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Full Form</th>
</tr>
</thead>
<tbody>
<tr>
<td>%</td>
<td>Percent</td>
</tr>
<tr>
<td>δ</td>
<td>Chemical shift</td>
</tr>
<tr>
<td>°C</td>
<td>Degree centigrade</td>
</tr>
<tr>
<td>AFM</td>
<td>Atomic force microscopy</td>
</tr>
<tr>
<td>aq.</td>
<td>Aqueous</td>
</tr>
<tr>
<td>Ar</td>
<td>Aryl</td>
</tr>
<tr>
<td>ArH</td>
<td>Aromatic proton</td>
</tr>
<tr>
<td>Ac</td>
<td>Acyl</td>
</tr>
<tr>
<td>Boc</td>
<td>t-butyloxycarbonyl</td>
</tr>
<tr>
<td>br</td>
<td>Broad</td>
</tr>
<tr>
<td>CD</td>
<td>Circular dichroism</td>
</tr>
<tr>
<td>Conc.</td>
<td>Concentrated</td>
</tr>
<tr>
<td>CuAAC</td>
<td>Copper catalyzed azide alkyne cycloaddition</td>
</tr>
<tr>
<td>d</td>
<td>Doublet</td>
</tr>
<tr>
<td>DCM</td>
<td>Dichloromethane</td>
</tr>
<tr>
<td>dd</td>
<td>Double doublet</td>
</tr>
<tr>
<td>DCC</td>
<td>N,N’-dicyclohexylcarbodiimide</td>
</tr>
<tr>
<td>DIPEA</td>
<td>N,N’-Diisopropylethylamine</td>
</tr>
<tr>
<td>DMF</td>
<td>N,N-dimethylformamide</td>
</tr>
<tr>
<td>DMSO</td>
<td>Dimethylsulfoxide</td>
</tr>
<tr>
<td>ESI</td>
<td>Electronspray ionization</td>
</tr>
<tr>
<td>FIB</td>
<td>Focused ion beam</td>
</tr>
<tr>
<td>Fmoc</td>
<td>Fluorenlymethyloxycarbonyl</td>
</tr>
<tr>
<td>g</td>
<td>Gram</td>
</tr>
<tr>
<td>h</td>
<td>Hour</td>
</tr>
<tr>
<td>Hz</td>
<td>Hertz</td>
</tr>
<tr>
<td>HRMS</td>
<td>High resolution mass spectrum</td>
</tr>
<tr>
<td>HRTEM</td>
<td>High resolution transmission electron microscope</td>
</tr>
<tr>
<td>IR</td>
<td>Infrared</td>
</tr>
<tr>
<td>J</td>
<td>Coupling constant</td>
</tr>
<tr>
<td>m</td>
<td>Multiplet</td>
</tr>
<tr>
<td>MD</td>
<td>Molecular dynamics</td>
</tr>
<tr>
<td>MeOH</td>
<td>Methanol</td>
</tr>
<tr>
<td>μM</td>
<td>Micro molar</td>
</tr>
<tr>
<td>μm</td>
<td>Micro meter</td>
</tr>
<tr>
<td>mg</td>
<td>Milli gram</td>
</tr>
<tr>
<td>mL</td>
<td>Milli liter</td>
</tr>
<tr>
<td>Abbreviation</td>
<td>Definition</td>
</tr>
<tr>
<td>--------------</td>
<td>------------</td>
</tr>
<tr>
<td>min</td>
<td>Minutes</td>
</tr>
<tr>
<td>mmol</td>
<td>Milli moles</td>
</tr>
<tr>
<td>mol</td>
<td>Mole</td>
</tr>
<tr>
<td>Mp</td>
<td>Melting point</td>
</tr>
<tr>
<td>m/z</td>
<td>Mass/charge</td>
</tr>
<tr>
<td>NR</td>
<td>Nile red</td>
</tr>
<tr>
<td>NMR</td>
<td>Nuclear magnetic resonance</td>
</tr>
<tr>
<td>ppm</td>
<td>Parts per million</td>
</tr>
<tr>
<td>q</td>
<td>Quartet</td>
</tr>
<tr>
<td>RT</td>
<td>Room temperature</td>
</tr>
<tr>
<td>s</td>
<td>Singlet</td>
</tr>
<tr>
<td>t</td>
<td>triplet</td>
</tr>
<tr>
<td>TFA</td>
<td>Trifluoroacetic acid</td>
</tr>
<tr>
<td>TLC</td>
<td>Thin layer chromatography</td>
</tr>
</tbody>
</table>
NOTES

1. All amino acids used in the reactions were of L-configuration. Standard single/triple letter codes are used to represent the amino acids.

2. All solvents employed in the reaction were distilled or dried from appropriate drying agent prior to use. Unless otherwise stated, all reagents were used without further purification.

3. Melting points were recorded in a Fisher-Johns melting point apparatus and were uncorrected.

4. IR spectra were recorded on a Nicolet, Protégé 460 spectrometer as KBr pellets.

5. 1H NMR spectra were recorded on Bruker-DPX-300 (1H, 300 MHz; 13C, 75 MHz) spectrometer using tetramethylsilane (1H) as an internal standard. Coupling constants are in Hz and the 1H NMR data are reported as s (singlet), d (doublet), br (broad), br d (broad doublet), t (triplet), q (quartet), m (multiplet).

6. Reactions were monitored wherever possible by thin layer chromatography (TLC). Silica gel G (Merck) was used for TLC and column chromatography was done on silica gel (100-200 mesh) columns, which were generally made from slurry in hexane, hexane/ethyl acetate or chloroform.

7. CD measurements were made using AVIV-420/ Jasco spectropolarimeter. Quartz cell of 0.1 cm was used for the measurements.

8. UV-Vis spectroscopy - The absorption spectra were recorded on a Shimadzu UV-2450 spectrometer.

9. SEM images were recorded using ZEISS EVO Series Scanning Electron Microscope EVO 50 operating at an accelerating voltage of 0.2 – 30 kV. For SEM, a 10 μL aliquot
of the sample solution was drop-casted on a glass cover slip, dried and coated with ∼10 nm of gold.

10. FIB-SEM A 10μl aliquot of the sample solution was put on a fresh piece of glass, which is attached to a stub via carbon tape. The sample was dried at room temperature and coated with ∼10nm of gold. Samples were analyzed using FEI Quanta 3D FEG High resolution scanning electron microscope (FE-SEM) combined with High-current ion column with Ga liquid-metal ion source.

11. HR-TEM images were recorded on a TECHNAI G2 (20S-TWIN) electron microscope operated at an accelerating voltage of 200 kV. Samples were prepared by drop-casting the sample on 200 square mesh carbon-coated copper grids.

12. AFM images were recorded using Bruker Dimension Icon atomic force microscope. Tapping mode is used for the analysis. About 10μl aliquot of the sample solution was transferred onto freshly cleaved mica and allowed to dry and imaged using AFM.

13. Optical microscopy: Samples for optical microscope were prepared by dissolving compound in methanol. A 5 mL aliquot of the sample solution was placed on a glass slide and allowed to dry in air at room temperature. The glass slide was then covered using a cover slip and analysed using a Nikon Ti Eclipse inverted optical microscope.

14. X-ray diffraction study was carried out on a BRUKER AXS SMART-APEX diffractometer with a CCD area detector (Mo Ka = 0.71073Å, monochromator: graphite). Frames were collected at T = 298 by w, f and 2q-rotation at 10 s per frame with SMART. The measured intensities were reduced to F2 and corrected for absorption with SADABS. Structure solution, refinement, and data output were carried out with the SHELXL program. Non-hydrogen atoms were refined anisotropically. C-H hydrogen
atoms were placed in geometrically calculated positions by using a riding model. Image was created with the diamond program.

15. Confocal microscope (NANONICS, Israel) was made with CW argon-ion laser (Modu-Laser, Model: Stellar Pro. Select) and the laser. The fluorescence from the samples was collected with the same objective and focused onto an avalanche photo diode (Model: SPCM-AQRH-14, CANADA), fitted with a 50 µm confocal pinhole, using a non-polarizing beamsplitter. The samples were scanned using a separate x-y closed loop piezo scanner (Nanonics Imaging). For all experiments, piezo scanning and data acquisition was controlled with a HV Piezo Driver (Nanonics Imaging) and software (NWS11). For image acquisition the size of the filed of view, resolution points and time exposure per points were 80 x 80 µM, 300 and 3 ms/point respectively.

16. Nile red (9-Diethylamino-benzo[α]phenoxazin-5-one), PRODAN (1-(6-Dimethylamino-naphthalen-2-yl)-propan-1-one) and fluorescein sodium salt (2-(3-Oxo-6-oxydo-3H-xanthén-9-yl)benzoate di sodium) were purchased from Sigma-Aldrich Chemical Co. (USA) and were used as received.

17. For Fluorescence measurements, All the steady-state fluorescence experiments of sample solutions were carried out on the FLS900 spectrofluorometer (Edinburgh, UK). The fluorescence measurements were carried out by using 1 cm quartz cuvettes and the temperature was maintained at 25 ºC using a Peltier based cooler (Quantum Northwest).