LIQUID-LIQUID EQUILIBRIA AND MICROCHANNEL EXTRACTION STUDIES FOR SEPARATION OF AROMATICS FROM HYDROCARBON MIXTURES

by

U. K. ARUN KUMAR

DEPARTMENT OF CHEMICAL ENGINEERING

Submitted in fulfillment of the requirements of the degree of Doctor of Philosophy to the

Indian Institute of Technology Delhi
DECEMBER 2012
Dedicated to My Parents

& My Wife
CERTIFICATE

This is to certify that the thesis entitled “LIQUID-LIQUID-EQUILIBRIA AND MICROCHANNEL EXTRACTION STUDIES FOR SEPARATION OF AROMATICS FROM HYDROCARBON MIXTURES”, being submitted by Mr. U. K. Arun Kumar to the Indian Institute of Technology Delhi, for the award of the degree of Doctor of Philosophy, is a record of bonafide research work carried out by him under my guidance and supervision.

The results contained in this thesis have not been submitted in part or full to any other university or institute for the award of any degree or diploma.

Dr. Ratan Mohan
Professor
Department of Chemical Engineering
Indian Institute of Technology Delhi

DECEMBER 2012
ACKNOWLEDGEMENTS

I would like to express my sincere gratitude to my supervisor Prof. Ratan Mohan for his valuable guidance and teachings in my research. His suggestions and ideas helped me to learn a lot throughout the course of my research.

I would like to extend my special thanks to Dr. Anupam Shukla for his kind suggestions in my research works.

I would like to thank especially Prof. B. Pitchumani and Prof. A. K. Gupta and other faculty members of chemical engineering department, IIT Delhi for their advice and encouragement.

I wish to acknowledge my seniors, Dr. U. Vengateson, Dr. D. Jeevarathinam, and other lab mates Mr. Faisal Qayoom Mir, Dr. V. Immanuel, Mr. Murali Mohan Seepana, Mr. Jay Pandey, Mr. Pradeep, Mr. K. V. Krishna Kishore and Ms. Kavitha Ganesh for their help during the period of experimentation and thesis preparation.

I would like to thank our lab technician and friend Mr. Chandan Singh, for his timely help of providing gas cylinders whenever needed.

I wish to acknowledge the co-operation, help, support, sacrifice and understanding of my wife Geetha, at the time when it was most needed.

U. K. ARUN KUMAR
Entry No: 2005CHZ8245
ABSTRACT

Aromatics separation from petroleum mixtures such as naphtha reformate, lube oils is industrially important and is done by liquid-liquid extraction. In recent years there has been an interest in the use of more environment friendly solvents than those in present industrial use like sulfolane, NMP. Further, from process intensification point of view, microchannel extraction has also been the subject of investigations. In this work therefore two solvents of the ‘green’ category – furfural and (Propylene Carbonate + Tetraethylene glycol) mixture -- have been studied for aromatics separation. Extraction in microchannels was also examined.

Major contribution of the present work is the Liquid-Liquid Equilibrium (LLE) study of the above systems of interest. New and detailed LLE data were obtained experimentally for ternary, quaternary, quinary and eight-component mixtures of alkanes + aromatics + solvent (furfural). LLE data for a ten-component synthetic naphtha with PC + TTEG as solvent was also obtained. For the furfural systems results show that overall selectivity of furfural for aromatics ranges between 2.8 to 14.5. Though these selectivity values are not as high as those reported for sulfolane, they are high enough for furfural’s use to be considered especially as the distribution coefficients are high - 0.54 to 0.81. Likewise PC + TTEG selectivities were found to be between 6.5 to 17.5 along with a high distribution coefficient 0.24 to 0.51. Thus the use of this mixture as solvent also appears feasible. In addition to experimental data, modeling of LLE was also done using NRTL and UNIFAC activity coefficient models. Very good correlation/prediction of data (rmsd < 3 % in all cases) was obtained.

In the second part micro-/milli- channel extraction studies were made to the extent of determining the efficiencies of aromatic extraction in these devices. Extraction efficiencies
ranging from 46.3 % to 97.3 %, depending upon the combination of the flow velocity, residence time and channel diameter. The 90 % or more efficiency cases indicate that mass transfer rates may not be that much of an issue. Effect of single parameter on extraction efficiency was also isolated from the various combinations. Efficiency increased from 68 to 83 % as flow velocity increased from 0.11 to 0.96 cm/s while residence time and channel diameter remained fixed at ~ 0.78 minute and 2 mm respectively. Likewise efficiency was seen to increase with residence time but decrease with diameter while the other two parameters were held constant. Quite high (> 85 %) extraction efficiencies in many of the cases indicate further investigation of the process to be of interest.
CONTENTS

<table>
<thead>
<tr>
<th>Certificate</th>
<th>ii</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acknowledgment</td>
<td>iii</td>
</tr>
<tr>
<td>Abstract</td>
<td>iv-v</td>
</tr>
<tr>
<td>Contents</td>
<td>vi - viii</td>
</tr>
<tr>
<td>List of Figures</td>
<td>ix - xii</td>
</tr>
<tr>
<td>List of Tables</td>
<td>xiii - xxx</td>
</tr>
</tbody>
</table>

CHAPTER 1 INTRODUCTION

1.1 Solvent extraction: Principle and Equipments 1
1.2 Need for aromatic Separation 2
1.3 Sources and Demands of Aromatics 3
1.4 Uses of Aromatics 4
1.5 Selection of Solvents 5
1.6 Experimental Liquid-Liquid Equilibrium Data 6
1.7 Liquid-liquid Equilibria Modeling and Simulation 7
1.8 Liquid-liquid Extraction in Microchannels 8
1.9 Objectives of the Thesis 9
1.10 Organization of the Thesis 10

CHAPTER 2 LITERATURE REVIEW

2.1 LLE Studies 11

2.1.1 Literature on Alkylene carbonates 12
2.1.2 Literature on Furfural and its derivatives 16
2.1.3 Literature on glycol related solvents 22
2.1.4 Literature on LLE of naphtha reformates 30

2.2 Microchannel extraction 33

2.3 Scope of Present Work 39
CHAPTER 3 EXPERIMENTAL METHODS

3.1 Chemicals used

3.2 Methods

3.2.1 Analysis

3.2.2 Preparation of calibration charts

3.3 Experimental Procedures

3.3.1 Liquid-Liquid Equilibria Measurements

3.3.2 Liquid-Liquid Extraction in Micro-channels

CHAPTER 4 RESULTS AND DISCUSSION

4.1 LLE of Known Systems

4.2 Ternary and Multicomponent systems

4.2.1 n-Heptane + Benzene + Furfural ternary system

4.2.2 n-Heptane + Toluene + Furfural ternary systems

4.2.3 Quaternary systems: n-Heptane + n-Dodecane + (Benzene or Toluene) + Furfural

4.2.4 Quinary System: n-Heptane + n-Dodecane + Benzene + Toluene + Furfural

4.2.5 Eight component system

4.3 LLE of synthetic naphtha reformate – mixed solvent system

4.4 Modeling and Simulation Results

4.4.1 Heptane + Benzene + Furfural system at 25 °C and 30 °C

4.4.2 Heptane + Toluene + Furfural system at 25 °C and 30 °C

4.4.3 Quaternary system ‘Heptane + Dodecane + (Benzene or Toluene) + Furfural’ at 25 °C

4.4.4 Quinary system: Heptane + Dodecane + Benzene + Toluene + Furfural at 25 °C

4.4.5 Eight component system - ‘n-heptane + n-dodecane + cyclohexane + benzene + toluene + o-xylene + ethylbenzene + furfural’ at two temperatures 30 °C and 35 °C
4.4.6 Synthetic Naphtha Reformate + (PC + TTEG) at 30°C and 35°C 127

4.5 Microchannel extraction studies.

4.5.1 Hydrodynamics 133

4.5.1A Dimensionless Analysis 136

4.5.1B Pressure Drop Calculations 140

4.5.1C Slug Length and Interfacial Area 145

4.5.2 Extraction Studies 148

4.5.2A n-Heptane + Toluene + Propylene Carbonate at 25°C 149

4.5.2B n-Heptane + Toluene + Furfural at 30°C 158

4.5.2C Synthetic Naphtha Reformate + (PC + TTEG 20%) at 30°C 160

4.5.2D Volumetric mass transfer coefficients 163

4.5.2E Mass transfer coefficient calculations 167

CHAPTER 5 CONCLUSION 173

REFERENCES 177

APPENDIX 186