ACCEPTOR DONOR PROPERTIES OF ORGANOANTIMONY(III) COMPOUNDS

By

JALIL RHAIF UGAL

Department of Chemistry

THESIS SUBMITTED
IN FULFILMENT OF THE REQUIREMENTS
FOR THE AWARD OF THE DEGREE OF

DOCTOR OF PHILOSOPHY

INDIAN INSTITUTE OF TECHNOLOGY, DELHI

JANUARY 1993
CERTIFICATE

This is to certify that the thesis entitled "ACCEPTOR DONOR PROPERTIES OF ORGANOANTIMONY(III) COMPOUNDS" being submitted by Mr. Jalil Rhaif Ugal to the Indian Institute of Technology, Delhi, for the award of the degree of Doctor of Philosophy in Chemistry, is a record of bonafide research work carried out by him. Mr. Jalil has worked under my guidance and supervision and has fulfilled the requirements for the submission of this thesis which, to my knowledge has reached the requisite standard.

The results contained in this thesis have not been submitted, in part or in full, to any other university or institute for the award of any degree or diploma.

[Signature]

Prof. N.K. Jha
Department of Chemistry
Indian Institute of Technology
New Delhi - 110 016.
ACKNOWLEDGEMENT

I have the opportunity to express my sincere thanks and gratitude to Prof. N.K. Jha for his astute guidance and help during this work.

I wish to thank the I.C.C.R. for financial assistance and I.I.T, Delhi for providing me the necessary facilities to carry out this work.

I would also like to thank Prof. A.S.N. Murthy (former head of the Department) and Prof. G.N.Rao, Head of the Department for their assistance.

The cooperation and help extended by my friends Pankaj Sharma, Ramashanker and Satnam Singh is gratefully acknowledged.

I would like to thank Prof. T.P.Singh, Dr. Punit Kaur and Dr. Manjurika Marik, Biophysics Department, All India Institute of Medical Science, New Delhi for the X-ray crystallographic work.

I am thankful to Mr. Narayan Singh (SLA) for his cooperation and help in the laboratory work and all the technical staff of the department for their help.

At the end I would like to record my deep sense of gratitude to my wife (Nawal) and my sons Haider, Aus and Ahmad for their moral support in achieving the present objective.

JALIL RHAIF UGAL
DEDICATED TO

NAWAL

THE WOMAN THAT I LOVE

THE NAME THAT I KEEP
ABSTRACT

In the present investigation three kinds of compounds have been synthesized and characterized. These are:

i) Mixed trihalophenylantimonates(III)
ii) Mixed dihalodiphenylantimonates(III)
iii) Complexes of HgX₂(X = Cl, Br, I, SCN) with arylstibines.

A series of mixed trihalophenylantimonates(III) with the general formula $R₄N[PhSbX₂Y]$ ($R = Me, Et, Bu$; $X = Cl, Br$; $Y = Br, I$ and $X \neq Y$) were prepared by the reaction of $R₄NY$ and $PhSbX₂$ in the 1:1 molar ratio in ethanol or methanol. These compounds were characterized by elemental analysis, conductance measurements, IR, far IR and $¹H$ NMR spectroscopy. Some of these compounds were subjected to thermogravimetric analysis in a nitrogen atmosphere. Molecular structure of one of these compounds ($Et₄N[PhSbCl₂Br]$) was also determined by single crystal X-ray diffraction which showed that the anion in this compound is present as a dimer in which antimony atoms are bridged through bromine atoms.

The second series consisted of the mixed dihalodiphenylantimonates(III) of the general formula $R₄N[Ph₂SbXY]$. These compounds were synthesized by the reaction of $R₄NY$ and $Ph₂SbX$ in ethanol or methanol in 1:1 molar ratio. The characterization of these compounds was
carried out by the same methods as in the mixed trihalophenylantimonates(III).

In addition to these two series of mixed haloorganooantimonates, an attempt was made to synthesize mixed tetrahaloantimonates(III) by the reaction of R_4NY and PhSbX_2 in 2:1 molar ratio, however, only the 1:1 compounds were obtained. In one particular case the reaction of PhSbCl_2 with Me_4NCl, Me_4NBr in 1:1:1 molar ratio gave mixed tetrahalophenylantimonate(III) $[\text{Me}_4\text{N}]_2[\text{PhSbCl}_3\text{Br}]$.

For the third kind of compounds, trimesitylstibine and triphenetylstibine were used as ligands in an attempt to synthesize some transition metal complexes.

i) Reactions of MX_2 ($\text{M} = \text{Co(II)}, \text{Ni(II)}, \text{Cd(II)}$; $\text{X} = \text{Cl, Br, I, SCN}$) were carried out with Sb(MeS)_3 in 1:1 molar ratio in non aqueous solvents did not yield the desired complexes.

ii) Reactions of HgX_2 ($\text{X} = \text{Cl, Br, I, SCN}$) with Sb(Mes)_3:

These reactions were carried out in the 1:1 and 1:2 molar ratios in THF. From the 1:1 molar reactions, the 1:1 $\text{HgX}_2.S\text{b(Mes)}_3$ complexes could be isolated. However, the 1:2 molar reactions yielded the same 1:1 complexes, that is $\text{HgX}_2.S\text{b(Mes)}_3$ instead of the desired 1:2 complexes.

These complexes were characterized by elemental analysis, conductance measurements, IR, far IR and ^1H NMR
spectroscopy. Thermogravimetric analyses of three of these complexes were carried out in a nitrogen atmosphere.

iii) Reactions of HgX₂ with Sb(Phenetyl)₃.

These reactions were carried out in the 1:1 and 1:2 molar ratios. However, no complex of definite composition could be obtained in any reaction except in the case of HgI₂. Both 1:1 and 1:2 complexes, i.e. HgI₂·Sb(Phenetyl)₃ and HgI₂[Sb(Phenetyl)₃]₂ were isolated. These complexes were characterized by elemental analysis, conductance measurements, IR, far IR and ¹H NMR spectroscopy.
CONTENTS

CHAPTER 1 INTRODUCTION AND LITERATURE REVIEW

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.1</td>
<td>Antimony</td>
<td>1</td>
</tr>
<tr>
<td>1.2</td>
<td>Antimony trihalides</td>
<td>1</td>
</tr>
<tr>
<td>1.3</td>
<td>Organic derivatives of antimony</td>
<td>1</td>
</tr>
<tr>
<td>1.4</td>
<td>Structure of trivalent antimony compounds</td>
<td>2</td>
</tr>
<tr>
<td>1.5</td>
<td>Structure of organoantimony(III) compounds</td>
<td>6</td>
</tr>
<tr>
<td>1.6</td>
<td>Donor acceptor properties</td>
<td>7</td>
</tr>
<tr>
<td>1.7</td>
<td>Haloantimonates(III)</td>
<td>8</td>
</tr>
<tr>
<td>1.7.1</td>
<td>Tetrahaloantimonates(III)</td>
<td>8</td>
</tr>
<tr>
<td>1.7.2</td>
<td>Other simple and mixed haloantimonates(III)</td>
<td>11</td>
</tr>
<tr>
<td>1.8</td>
<td>Haloorganoantimonates(III)</td>
<td>13</td>
</tr>
<tr>
<td>1.9</td>
<td>Tertiary stibines as ligands</td>
<td>14</td>
</tr>
<tr>
<td>1.9.1</td>
<td>Titanium, Zirconium and Hafnium</td>
<td>15</td>
</tr>
<tr>
<td>1.9.2</td>
<td>Vanadium, Niobium and Tantalum</td>
<td>16</td>
</tr>
<tr>
<td>1.9.3</td>
<td>Chromium, Molybdenum and Tungsten</td>
<td>16</td>
</tr>
<tr>
<td>1.9.4</td>
<td>Manganese, Technetium and Rhenium</td>
<td>18</td>
</tr>
<tr>
<td>1.9.5</td>
<td>Iron, Ruthenium and Osmium</td>
<td>19</td>
</tr>
<tr>
<td>1.9.6</td>
<td>Cobalt, Rhodium and Iridium</td>
<td>21</td>
</tr>
<tr>
<td>1.9.7</td>
<td>Nickel, Palladium and Platinum</td>
<td>23</td>
</tr>
<tr>
<td>1.9.8</td>
<td>Copper, Silver and Gold</td>
<td>26</td>
</tr>
<tr>
<td>1.9.9</td>
<td>Zinc, Cadmium and Mercury</td>
<td>27</td>
</tr>
<tr>
<td>1.10</td>
<td>Applications</td>
<td>28</td>
</tr>
<tr>
<td>1.10.1</td>
<td>Biological activity</td>
<td>28</td>
</tr>
<tr>
<td>1.10.2</td>
<td>Catalytic activity</td>
<td>30</td>
</tr>
</tbody>
</table>
1.10.3 Flame retardance 31
1.10.4 Organic synthesis 31
1.10.5 Other applications. 31
1.11 Aim and Scope of the present work 32

CHAPTER 2 MIXED TRIHALOPHENYLANTIMONATES(III)

2.1 Introduction 34
2.2 Experimental 34
2.2.1 Reagents 34
2.2.2 Solvents 39
2.2.3 Preparation 41
2.2.4 X-ray data and structure solution 48
2.3 Physico chemical studies 49
2.4 Results and Discussion 52
2.4.1 General properties 52
2.4.2 Conductance measurements 53
2.4.3 Infra red spectra 55
2.4.4 NMR Spectra 61
2.4.5 Crystal structure of Et₄N[PhSbCl₂Br] 63
2.4.6 Thermogravimetric analysis 65
2.4.7 Attempts to prepare mixed tetrahalophenylantimonates(III) 66

Tables 69
Figures 76

CHAPTER 3 MIXED DIHALODIPHENYLANTIMONATES(III)

3.1 Introduction 87
3.2 Experimental 87
CHAPTER 4 COMPLEXES OF HgX₂ WITH Sb(Mes)₃ AND Sb(Phenetyl)₃

4.1 Introduction
4.2 Experimental
4.2.1 Reagents
4.2.2 Solvents
4.2.3 Preparation
4.3 Physico chemical studies
4.4 Molecular weight determination
4.5 Results and Discussion.
4.5.1 Reactions of HgX₂ with Sb(Mes)₃
4.5.2 Reactions of HgX₂ with Sb(Phenetyl)₃
4.5.3 Reaction of Co(II) and Cd(II) halides and thiocyanate with Sb(Mes)₃
4.5.4 Infra red spectra
CHAPTER 5 SUMMARY AND FURTHER SCOPE

5.1 Summary 153

5.2 Further scope 158

REFERENCES 160