ANALYSIS OF HUMAN BLOOD FLOW THROUGH NARROW TUBES

by

BHARAT BHUSHAN GUPTA
M.Sc.Engg.(Mech.)
Applied Mechanics Department

Submitted
In Fulfilment of the Requirements of
the Degree of Doctor of Philosophy

to the
Indian Institute of Technology, Delhi
July, 1976
CERTIFICATE

This is to certify that the thesis entitled "Analysis of Human Blood Flow Through Narrow Tubes" being submitted by Mr. Bharat Bhushan Gupta to the Indian Institute of Technology, Delhi, for the award of the Degree of Doctor of Philosophy in Applied Mechanics, is a record of bonafide research work carried out by him. He has worked under my guidance and has fulfilled the requirements for the submission of this thesis, which has reached the requisite standard.

The results contained in this thesis have not been submitted in part or in full, to any other University or Institute for the award of any Degree of Diploma.

V. Seshadri
(V. Seshadri)
Applied Mechanics Deptt.
Indian Institute of Technology,
New Delhi-29.
ACKNOWLEDGEMENTS

I wish to express my deepest gratitude to Dr. V. Seshadri, my Supervisor, for suggesting this topic, and for his constant guidance, interest and encouragement.

My thanks are also due to:

Dr. R. Natarajan, for inspiring me to use Finite Element Method and for his useful suggestions at all stages of this investigation.

Dr. V.B. Lal, Chairman, Blood Bank Organisation, Delhi, for the free supply of blood used in this investigation.

The Computer Centre and the Stress Analysis Laboratory, Department of Applied Mechanics of the Indian Institute of Technology, Delhi, for providing the research facilities.

The Aligarh Muslim University, Aligarh, my employers, for granting me study leave under Quality Improvement Programme and the Ministry of Education, Govt. of India, for providing the financial assistance.

My loving wife, Usha, for her patience and hardship, she shared with me during the course of my study.
ABSTRACT

The flow of human blood through tubes with diameter less than 500 microns has been investigated. In order to quantitatively study the anomalous behaviour of blood, simultaneous measurements of hematocrit reduction, i.e., the difference between reservoir hematocrit and average tube hematocrit, and apparent relative fluidity are made for red blood cell and hardened red blood cell suspensions, over a range of hematocrit (0 to 45\%) and tube to cell diameter ratio (7 to 60).

Plasma has been found to be Newtonian in character and its viscosity to be same for all tubes and at all flow rates. The results are independent of the flow rate for the range of wall Shear Stresses investigated. The tube hematocrit is found to be always lower than the cup-mixing or feed hematocrit, the effect being more pronounced at small tube diameters. Increase in the cup-mixing hematocrit causes a reduction in the hematocrit defect. The apparent relative viscosity at any given hematocrit is found to decrease with decrease in tube diameter. The bulk property hypothesis, i.e., apparent relative viscosity being a function of tube hematocrit only, is an adequate approximation (maximum error 5\%) for diameter ratios larger than 15, at all hematocrits. A comparison of hematocrit defect in RBC and HRBC suspensions shows that the hematocrit reduction is almost same, and the apparent relative
viscosity for the HRBC suspension is found to be larger at all hematocrits as compared to RBC suspension. This can be attributed to flexibility of RBC which plays an important role in reducing the apparent viscosity in narrow tubes.

Analytical and semi-emperical models are used for calculating the wall layer thickness and velocity profile with present experimental data. Most of the models failed at hematocrit more than 30% and the tube diameter less than 130 microns. It is seen that wall layer thickness increases as tube diameter is decreased and plug flow radius increases with increase in the hematocrit. At high hematocrits the extent of plug flow increases with decrease in tube size. The comparison with HRBC shows that wall layer thickness is slightly more and plug flow radius is less in the case of RBC suspension.

Flow of blood in capillaries, 4 to 10 microns in diameter, is analysed by Finite Element Method, using stream function formulation. Solution of Stokes flow problem is obtained by the principle of minimization of local viscous energy dissipation. Triangular plate bending element, with slope smoothening functions are used in discretization of the flow field and the solutions for unknown nodal variables are computed by Front Solution technique. A computer programme has been developed and implemented on ICL 1909 Computer. Fully developed and entry flow problems are analysed in order to test the convergence of the solution procedure.
Flow of neutrally buoyant spheres with sphere to tube diameter ratios, 0.5, 0.7, 0.9 and 0.95, has been analysed and results of additional pressure drop, wall shear stresses and stream lines are compared with other published results. It is seen that the disturbance due to presence of sphere is confined to a region of about one tube radius on both sides of sphere surface. The wall shear stresses are found to increase rapidly for diameter ratios more than 0.7. Effect of spacing between two spheres, shows that the recirculatory motion decreases with the decrease in spacing.

Actual deformed shapes of erythrocytes are incorporated in the analyses with undeformed cell to tube diameter ratio of 1.0, 1.3 and 2.0. Results of shear stress distribution (both on capillary wall and cell surface), additional pressure drop and stream line patterns are presented. The maximum value of wall shear stress was found to occur just before the largest cross section of the deformed cell and the maximum value for surface shear stress was found at a position slightly down stream of the largest cross section. The spacing between two cell surfaces is varied between zero and 2 tube radius. It is seen that flow pattern between any two erythrocytes changes considerably with change in spacing. Apparent viscosity of blood at different hematocrits in capillaries of different diameters has also been calculated.
(vi)

CONTENTS

CERTIFICATE (i)
ACKNOWLEDGEMENTS (ii)
ABSTRACT (iii)
CONTENTS (vi)
NOMENCLATURE (xi)

CHAPTER 1 INTRODUCTION
1.1 Human Circulatory System 1
1.2 Human Blood and Rheological Properties 3
1.3 Blood Flow Through Narrow Tubes

Figure (1.1) 11

PART I BLOOD FLOW THROUGH TUBES WITH DIAMETERS IN THE RANGE OF 50-500 MICRONS

CHAPTER 2 BACKGROUND
2.1 Anomalous Effects in Blood Flow Through Narrow Tubes 12
2.2 Present Investigation 21

CHAPTER 3 EXPERIMENTAL PROGRAM
3.1 The Apparatus 23
3.2 Glass Capillary Tubes 24
3.3 Preparation of Samples 26
3.4 Range of Parameters 29

Investigated
3.5 Experimental Procedure

Table 1. Dimensions of Glass Capillaries

Figures (3.1 - 3.7)

EXPERIMENTAL RESULTS AND DISCUSSION

4.1 Plasma

4.2 Red Blood Cell Suspension in Saline

4.2.1 Apparent Viscosity of RBC Suspension in a Large Tube

4.2.2 Hematocrit Reduction

4.2.3 Apparent Relative Fluidity

4.2.4 Bulk Property Hypothesis

4.3 Red Blood Cell Suspension in Plasma

4.4 Hardened Red Blood Cell Suspension in Saline

4.4.1 Apparent Viscosity of HRBC Suspension in a Large Tube

4.4.2 Hematocrit Reduction

4.4.3 Apparent Relative Fluidity

4.4.4 Bulk Property Hypothesis

4.5 Discussion

Table 2. Bulk Property Hypothesis

Figures (4.1 - 4.14)
CHAPTER 5
WALL LAYER THICKNESS AND VELOCITY PROFILE

5.1 Analytical Models of Flow 68
5.2 Calculations Using the Model of Thomas 68
5.3 Calculations Using The Model of Das and Seshadri 71

5.3.1 RBC Suspension 72
5.3.2 HRBC Suspension 73
5.3.3 Comparison 74
5.4 Discussion 75

Table 3. Calculation Using Thomas Model 76
Figures (5.1 - 5.7) 78

PART II
ANALYSIS OF CAPILLARY BLOOD FLOW BY FINITE ELEMENT METHOD

CHAPTER 6
BACKGROUND 85

6.1 Models of Capillary Blood Flow 87

6.1.1 Analyses Involving Rigid Particle Shapes 87
6.1.2 Analyses with Deformable Cell Shapes 90
6.1.3 Analyses of Flow Between Successive Cells 93

6.2 Present Investigation 95
## CHAPTER 7
### FINITE ELEMENT FORMULATION

**7.1 Governing Equations**

**7.1.1 Finite Element Method**

**7.1.2 Solutions of Creeping Fluid Flow Problems Using Finite Element Method**

**7.2 Formulation of the Problem**

**7.3 Method of Solution**

**7.4 Convergence Test**

**7.4.1 Flow Field Discretization**

**7.4.2 Results**

**7.5 Modifications in Formulation**

**Figures (7.1 - 7.6)**

## CHAPTER 8
### NEUTRALLY BUOYANT SPHERES IN TUBE FLOW

**8.1 Flow Domain, Boundary Conditions**

**8.2 Results**

**8.2.1 Velocity Profiles and Shear Stresses**

**8.2.2 Additional Pressure Drop, Apparent Viscosity**

**8.2.3 Stream Lines**

**8.3 Effect of Spacing**

**Figures (8.1 - 8.11)**
CHAPTER 9  
CAPILLARY BLOOD FLOW  
138
9.1  Undeformed Erythrocyte  
138
9.2  Deformed Erythrocyte  
140
9.3  Results  
141
9.3.1  Shear Stresses  
141
9.3.2  Additional Pressure Drop  
142
9.3.3  Stream Lines  
143
9.4  Effect of Spacing, Bolus Flow Pattern  
144
9.5  Discussion  
145
Figures (9.1 - 9.14)  
147
REFERENCES  
161
APPENDIX I  
SEMI-EMPERICAL MODELS OF TUBE FLOW  
177
A.  Theoretical Model of Thomas  
177
B.  Semi-Emperical Model of Das and Seshadri  
181
APPENDIX II  
APPARENT VISCOITY OF BLOOD IN A CAPILLARY  
186
BIODATA  
188